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ABSTRACT  

How are two numbers combined into a third? Arithmetic is one of the most important 

cultural inventions of humanity, however we still lack a comprehensive understanding of how the 

brain computes additions and subtractions. The main goal of my dissertation is to better 

understand the temporal and spatial dynamics of the neurocognitive mechanisms underlying 

mental calculation. In the first study, I used a novel behavioral method based on trajectory 

tracking capable of dissecting the succession of processing stages involved in arithmetic 

computations. Results supported a model whereby single-digit arithmetic is computed by a 

stepwise displacement on a spatially organized mental number line, starting with the larger 

operand and incrementally adding or subtracting the smaller operand. In a second study, I 

analyzed electrophysiological signals recorded directly from the human cortex while subjects solved 

addition problems. I found that the overall activity in the intraparietal sulcus monotonically 

increased as the operands got larger, providing evidence for its involvement in arithmetic 

computation and decision-making. Surprisingly, sites within the posterior inferior temporal gyrus 

showed an initial burst of activity that monotonically decreased as a function of problem-size, 

suggesting that the ventral temporal cortex contain neuronal populations specifically involved in 

arithmetic processing, possibly engaged in the early identification of the difficulty or amount of 

evidence available for a calculation. In the last study, I recorded magnetoencephalography signals 

while subjects verified simple additions and subtractions in the form of 3+2=9, with each 

successive symbol presented sequentially. By applying machine learning techniques, I investigated 

the temporal evolution of the representational codes of the operands and provided a first 

comprehensive picture of a cascade of unfolding processing stages underlying arithmetic 

calculation and decision-making at a single-trial level. Overall, this dissertation provides several 

contributions to our knowledge about how elementary mathematical concepts are implemented in 

the brain and shows that a multimethod approach including continuous behavioral measures and 

time-resolved neuroimaging can help us identify and characterize the mental processes of high-

level symbolic cognition.  
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  GENERAL INTRODUCTION 

Revolutionary cultural inventions such as mathematics are unique to the human species 

and radically enhances our native cognitive competence. In fact, mathematics proved to be so 

powerful that it became the fundamental language of science, which we use to understand 

ourselves and everything else. In increasingly technological societies, revealing how mathematics 

is implemented in the brain is an extremely important and fascinating research program.  

Arithmetic is the most elementary branch of mathematics and consists of the study of 

numbers and the operations between them. Despite decades of research, it is still largely unknown 

how the brain solves a simple calculation such as 3+5=8. Although seemingly simple for educated 

adults, exact arithmetic involves highly sophisticated abstract concepts and operations, result of 

thousands of years of evolution, and engages a complex network comprising several brain regions 

(Arsalidou & Taylor, 2011; Dehaene, 1999; Menon, 2014).  

How are two numbers combined into a third? This is the foundational question that guides 

my dissertation. I approached it by conducting a series of studies with the goal of better 

understanding the neurocognitive mechanisms of arithmetic calculations and characterizing their 

temporal and spatial dynamics in the human brain.  

 

1.1  Paleolithic arithmetic  

Humans have been actively using numbers at least since the Upper Paleolithic (40,000-

10,000 years BP). Archeological research has revealed the existence of several objects, usually 

animal bones, that contain well organized sets or carved notches, commonly known as tally sticks. 

Although still subject of debate, abundant evidence suggests that these objects were simple 

exosomatic devices or Artifical Memory Systems that employed a unary notation system to create, 

store, process and transmit numerical and temporal information central to these societies, such as 

keeping record of objects and cattle, representing the lunar calendar, etc. This evidence comes 
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from the careful examination of several characteristics of the marks, namely their number, 

morphology, accumulation over time and spatial distribution (d’Errico, 1998).  

The oldest object of this class is the Lebombo Bone (Figure 1.1a), a baboon fibula found 

in the Border Cave in the Lebombo Mountains (South Africa), dating to 44,000 years BP. It 

contains 29 notches, divided in groups produced with different tools. Thus, it is considered to be 

the first record of counting or addition (d’Errico et al., 2012).  

 

 

Figure 1.1 Examples of Artificial Memory System artifacts 
a) Lebombo Bone. The different colors represent notches made by different tools. Adapted from 
d’Errico et al. (2012). b) Spatula made of a rib. Arrows indicate the areas that were 
scraped/subtracted. Adapted from d’Errico (1998). 
 

Another interesting object is a spatula made from a rib (Figure 1.1b), found in the 

Magdalenian (17,000 - 12,000 BP) levels of Laugerie-Basse (Dordogne, France), which contains 

more than 150 marks, grouped in at least 17 different sets and made by different tools. This object 

contains the earliest known evidence of a subtraction, since one of the sets appears to be have 
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been deliberatively erased by scraping (d’Errico, 1998).  

The evolution of these devices is thought to have culminated on the development of a 

variety of more elaborated numerical systems and symbolic notations found in several ancient 

societies (d’Errico, 1998; d’Errico et al., 2012), most notably the Babylonians, Mayans, Greeks 

and Egyptians, which formed the basis for the way we represent and operate with numbers today.  

 

1.2  The origins of numerical abilities 

1.2.1  The number sense  

The ability to instantly grasp the approximate number of objects in a scene and to compare 

abstract quantities, known as the ‘number sense’ (Dantzig, 1967), is a cognitive capacity already 

present in human newborns (de Hevia, Izard, Coubart, Spelke, & Streri, 2014; Izard, Sann, Spelke, 

& Streri, 2009) and possibly even in fetuses during the last three months of pregnancy (Schleger 

et al., 2014). It has been extensively shown that humans share this approximate number system 

(ANS) (Feigenson, Dehaene, & Spelke, 2004) with a variety of other animal species, from beetles 

(Carazo, Font, Forteza-Behrendt, & Desfilis, 2009) to monkeys (Piantadosi & Cantlon, 2017). 

Therefore, the dominant view is that the ANS was selected during evolution as a highly 

advantageous function serving several vital behaviors, such as protecting cubs (McComb, Packer, 

& Pusey, 1994), selecting preys (Krause & Godin, 1995), mating (Carazo et al., 2009) and making 

collective decisions (Piantadosi & Cantlon, 2017).   

The ANS is thought to represent numbers as analog magnitudes (Gallistel, 1990), similarly 

to ways we represent space and time (Dehaene & Brannon, 2010; Walsh, 2003). Importantly, the 

psychophysics Weber-Fechner law1 that characterizes the perception of stimuli in several basic 

sensory modalities can also be applied to describe approximate number comparison and estimation 

                                         
1 According to Weber’s law, a variation that can be discriminated in the stimulus intensity (∆ϕ) is a 
constant fraction (c) of the stimulus initial value (ϕ). Mathematically: ∆ψ = 𝑐 ∆&

&
, where (∆ψ) is the 

variation in the perception.  According to Fechner’s law, the perceived magnitude of a stimulus is equal to 
the natural logarithm of the stimulus multiplied by a given constant (k), which varies with the particular 
dimensions of the stimuli. Mathematically: ψ	
   = 𝑘 logϕ.  
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in both human and other animal species (Cantlon & Brannon, 2006; Dehaene, Dehaene-Lambertz, 

& Cohen, 1998; Jevons, 1871).  More specifically, the Weber-Fechner law can account for two 

behavior effects commonly found, namely the distance effect: it is easier and faster to discriminate 

between pairs of quantities as their numerical distance increases (Moyer & Landauer, 1967); size 

effect: the discrimination of pair of quantities with a fixed numerical distance becomes less accurate 

and slower as the quantities increase (scalar variability or ratio-dependency) (Dehaene, 2007).  

 

1.2.2  The neural basis of the approximate number system  

Pioneering electrophysiological work revealed the existence of neurons tuned to specific 

numerosities (the cardinality of a set of objects) in the monkey ventral intraparietal area (VIP) 

and lateral prefrontal cortex (LPFC) (Nieder & Miller, 2004). In a typical setting, monkeys are 

trained to perform a delayed match-to-numerosity task, in which they must compare two 

sequentially presented sets of dots, controlled for basic visual features of the stimuli, such as dot 

size and total area occupied (Figure 1.2a). Figure 1.2c shows an exemplar VIP neuron which 

responds more strongly to the number 6 as compared to other numbers. These neurons were also 

found in monkeys that were completely naïve to the task and did not receive any explicit numerical 

training (Viswanathan & Nieder, 2013). The responses of some of these neurons were also found 

to be supramodal, that is, independent of the stimulus modality: auditory or visual (Nieder, 2012, 

Figure 1.2d). Finally, the activity pattern observed in these neurons can be modeled by the Weber-

Fecher law: the standard deviation of the Gaussian tuning curves increases as a function of 

numerosity, a pattern that is mathematically equivalent to fixed standard deviation in a log-

compressed scaled (Nieder, 2016).  

Additionally to the number-selective neurons found in VIP, Roitman, Brannon and Platt 

(2007) reported neurons in the lateral intraparietal area (LIP), whose discharge rate monotonically 

increased or decreased as a function of numerosity. Therefore, the interactions between LIP-VIP 

neurons could be the neurophysiological implementation of an early neural-network model: 

numerosity detection may arise by a combination of a first layer containing “summation” units 

(possibly in LIP) with a second layer composed by selective units (possibly in LIP) (Dehaene & 
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Changeux, 1993, see also Stoianov & Zorzi, 2012; and Verguts & Fias, 2004). 

 

 

Figure 1.2 Number-selective neurons in the monkey lateral and prefrontal cortices 
a) Experimental design. Monkeys are trained in a task in which they must judge whether two 
sequentially presented collection of dots are the same of different. b) Recording sites: ventral 
parietal area (VIP) and lateral prefrontal cortex (lPFC). c) An exemplar neuron that shows higher 
spiking rate for the number 6 during the sample period. d) Tuning curves for number selective 
neurons that show a modality-independent (auditory vs. visual) stimuli response. Adapted from 
Nieder (2016).  
 

A series of functional magnetic resonance imaging (fMRI) confirmed the selective 

engagement of the lateral parietal cortex (LPC) in number processing in humans adults and 

children (Cantlon, Brannon, Carter, & Pelphrey, 2006). Piazza, Izard, Pinel, Le Bihan and 

Dehaene (2004) asked adult subjects to passively attend to a rapid stream of sets of dots that had 
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a constant numerosity, but varied in their basic visual properties, such as dot size and occupied 

area. After a habituation period, in which the fMRI activity dropped, a deviant number was 

presented, causing a rebound effect. By systematically varying the distance between the adapted 

and deviant stimuli, the authors modeled the fMRI activity evoked by the deviant number and 

revealed the existence of tuning curves in the bilateral intraparietal sulcus (IPS). Remarkably, 

these tuning curves at the population level were similar to the ones found in single cells of 

nonhuman primates (Figure 1.3b). Subsequent studies revealed that the IPS responses to numbers 

are independent of the stimulus format (i.e., non-symbolic sets of dots, Arabic numerals and 

number words), suggesting that the IPS hosts a common code for abstract quantities. (Fias, 

Lammertyn, Reynvoet, Dupont, & Orban, 2003; Piazza, Pinel, Le Bihan, & Dehaene, 2007, Figure 

1.3a,b,c; but see Cohen Kadosh & Walsh, 2009). Furthermore, using multivariate pattern analysis 

(MVPA), Eger et al., 2009 showed that the identity of individual numbers can be decoded from 

the fMRI activity in the IPS. Importantly, a decoder trained to classify digits significantly 

generalized to discriminate dots (Figure 1.3d). More recently, studies using ultra-high-field fMRI 

(7T) reported a topographical organization of numerosity in the superior parietal lobe (SPL) 

(Harvey, Klein, Petridou, & Dumoulin, 2013), subsequently also observed in other associative 

areas along the temporal-occipital cortex and precentral sulcus (Harvey & Dumoulin, 2017; Harvey, 

Ferri, & Orban, 2017, Figure 1.3e). 

 

1.2.3  The mental number line  

Numbers seem to be represented in a spatially organized form, like a mental number line. 

This idea dates to the late 19th century, when Sir Francis Galton qualitatively examined several 

drawings reflecting subject’s introspection on how they visualized numbers in their mind (Galton, 

1881). 
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Figure 1.3 Number representation in the human lateral parietal cortex 
a) fMRI Subliminal priming study showing left and right intraparietal response to numerical 
novelty for both Arabic numerals and number words. Adapted from (Naccache & Dehaene, 2001). 
b) fMRI adaptation study using non-symbolic numbers (sets of dots), showing tuning curves for 
numbers at the bilateral intraparietal sulculs (IPS). Adapted from (Piazza et al., 2004). c) fMRI 
adaptation study showing that the distance effect observed in the bilateral IPS also occurs across 
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notation: Arabic numerals vs. sets of dots. Adapted from (Piazza et al., 2007). d) fMRI 
multivariate decoding study showing that the identity of both Arabic numerals and non-symbolic 
numbers can be decoded from IPS activity.Adapted from (Eger et al., 2009). e) Ultra-high field 
fMRI at 7T revealed a topographic organization of non-symbolic numbers in the human SPL. 
Adapted from (Harvey et al., 2013).  
 

A century later, Dehaene, Bossini and Giraux (1993) tested and presented convincing 

evidence supporting this hypothesis. The authors observed that, in a parity judgment tasks, 

subjects were faster to respond to smaller numbers when pressing a button with the left hand and 

faster for larger numbers with the right hand. This ‘spatial-numerical association of response codes’ 

(SNARC) effect has been extensively replicated using a variety of tasks (Nuerk, Wood, & Willmes, 

2005) and it was even found in other species such as monkeys (Drucker & Brannon, 2014) and 

even in newborn chicks (Rugani, Vallortigara, Priftis, & Regolin, 2015). An interesting attentional 

variation of this effect was found using a modified Posner Cueing Task (Posner, 1980): cueing 

human subjects with small vs. large numbers caused shifts in the covert attention to the left vs. 

right side of the screen, respectively, thus facilitating target detection (Fischer, Castel, Dodd, & 

Pratt, 2003). Complementarily, it has been found that patients suffering from hemispatial neglect, 

a neuropsychological syndrome that causes systematic failure in attending to one side of the space 

(usually the left), show a bias towards higher numbers when asked to bisect a numerical interval 

(e.g., they would respond that the middle of 11–19 is 17, instead of 15), as if they were also 

neglecting the left side of the mental number line (Zorzi, Priftis, & Umiltà, 2002). Although the 

orientation of the mental number line can be at least partially driven by cultural factors, such as 

writing direction (Dehaene et al., 1993), a robust body of evidence suggests that the numerical–

spatial interactions are innate (Rugani & de Hevia, 2017) and, in the human brain, share a 

common parietal circuit for attention to external space and internal approximate number 

representation (Hubbard, Piazza, Pinel, & Dehaene, 2005; for a alternative and potentially 

complementary working memory account, see van Dijck & Fias, 2011).  

 

1.2.4  From approximate quantities to exact symbols 

In addition to the ANS, humans (Feigenson et al., 2004) and other animals (Agrillo, Piffer, 



25 
 
 

Bisazza, & Butterworth, 2012; Tomonaga & Matsuzawa, 2002) also share a core system for 

representing objects, based on spatial-temporal features, such as cohesion (objects move as 

bounded wholes), continuity (objects move on connected, unobstructed paths), and contact 

(objects do not interact at a distance) (Spelke & Kinzler, 2007). Differently from the ANS, this 

‘object tracking system’ (OTS) allows to instantly grasp the exact number of small sets containing 

up to four items (a process also known as subitizing). Subitizing does not follow Weber’s law, that 

is, subject’s error rates and RTs do not increase as a function of magnitude from 1 to 4 (Anobile, 

Cicchini, & Burr, 2016; Jevons, 1871).  

Unlike the ANS and OTS, number symbols and number words are uniquely human 

inventions, which are used to represent, manipulate and combine exact quantities (Dehaene, 1992). 

Since both the ANS and OTS are found to be present in pre-verbal infants and interact during 

development, they are generally considered to be, with the mediation of language, complementary 

core neurocognitive ‘start-up tools’ from which symbolic arithmetic is built (Piazza, 2010). In fact, 

it has been extensively shown that the acuity of the ANS is an important predictor of 

mathematical achievement (Halberda, Mazzocco, & Feigenson, 2008; Piazza et al., 2010; Pinheiro-

Chagas et al., 2014; Starr, Libertus, & Brannon, 2013). However, the precise developmental 

mechanism underlying the acquisition of exact number representation is still subject to debate 

(see Carey, 2009; and Dehaene, 1999).  

At the neurophysiological level, a computational model provided evidence for the 

hypothesis that the higher precision in symbolic number representation could be achieved by a 

progressive narrowing of the Gaussian tuning curves of number-selective neurons, in a way that, 

at least part of the population, would become precisely tuned to specific quantities and not respond 

to its neighboring ones (Verguts & Fias, 2004). It is important to note that, although symbolic 

numbers convey exact meaning, they seem to be grounded on a quantity-based representation, 

with similar properties as the ones of the ANS. For example, in symbolic number comparison 

tasks, behavior performance is also explained by Weber-Fechner’s law, that is, it becomes 

increasingly faster and accurate to discriminate pairs of Arabic numerals as their numerical 

distance increases (Dehaene, 2007; Moyer & Landauer, 1967).  
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1.3  Cognitive mechanisms of arithmetic calculations  

Although great progress has been made in understanding how the brain represent numbers, 

much less is known about the neurocognitive mechanisms underlying exact number manipulation 

in the form of arithmetic calculations, such as additions and subtractions. In the past 40 years, 

researchers have been using mental chronometry (Donders, 1969; Sternberg, 1969) to measure 

behavioral performance in several arithmetic tasks. Despite the variety of chronometric findings, 

one particular effect has been widely replicated in virtually all studies that investigated mental 

arithmetic, namely the problem-size effect: reaction times (RTs) increases as a function of the size 

of the operands to be added, subtracted or multiplied (Zbrodoff & Logan, 2005; Zimmerman et 

al., 2016). The aim to find the origins of problem-size effect became a central topic in the literature 

and, by investigating its properties across operations and during development, researchers have 

come to propose different cognitive models of arithmetic.  

 

1.3.1  The min model  

Thomas (1963) was the first to propose an information-processing account for mental 

arithmetic, suggesting that the time needed to perform a given calculation should be strictly 

proportional to the amount of information that must be handled by the system. Inspired by this 

idea, Groen and Parkman conducted a series of mental calculation experiments measuring RTs in 

both children and adults. In their seminal study, Groen and Parkman (1972) presented first-

graders with several single-digit additions and asked them to press one out of ten buttons 

corresponding to the results 0 to 10. They found that the best predictor of RTs was the smaller 

of the two operands (min), with a slope of 410 ms per unit. Therefore, they proposed a model 

based on a counter device, which starts by setting its value to the larger of the two operands and 

then increments it with a number of units corresponding to the min operand in steps of one, with 

each step taking 410 ms (Figure 1.4a,b). As the 410 ms step is within the implicit speech rates, 

~150 ms (Landauer, 1962), Groen and Parkman (1972) proposed that children could be actually 

performing silent counting. Using a verification task with adults, Parkman and Groen (1971) also 
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found that the min operand was the best predictor of RT, but with a much steeper slope of only 

20 ms per unit, which is way faster than the implicit speech rates (Figure 1.4c).  

 

 

Figure 1.4 The min counting model by Groen and Parkman (1972) 
a) A device which sets the counter to a and adds x to a by increments of one. Based on the results, 
a = max operand and the number of increments = min operand. b) Mean RTs as a function of 
min operand in children using a production task (children had to press one out of ten buttons 
representing the results 0-10). c) Mean RTs as a function of min operand in adults using a 
verification task. The two upper parallel lines represent the regression fit for non-tie problems 
(filled line indicate incorrect problems, which were slower than correct ones - dotted line). Bottom 
line represent tie problems, in which the min model was not significant. Adapted from Groen and 
Parkman (1972).  
 

Importantly, no problem-size effect was found for tie problems (e.g., 3+3), which were all 

solved within ~650 ms, suggesting that the result could be accessed through direct retrieval from 

long-term memory. Because the slope of the min effect for non-tie problems was found to be too 

fast for an explicit counting procedure, the authors proposed that, in most cases, adults can also 

solve single-digit non-tie additions by direct retrieval from long-term memory, due to the effect of 

overlearning the arithmetic table in the first years of formal schooling. Therefore, the reduced 

problem-size effect observed would, arise from a small percentage of the cases (~5%) in which the 

retrieval strategy fails, requiring adults to use the backup counting strategy.   

 

1.3.1.1  Fact-retrieval models of elementary arithmetic  

The idea of occasional failure of direct retrieval was further corroborated by LeFevre et al. 

(1996) who asked subjects to introspect about their strategies while solving additions problems. 
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The authors showed that in more than 80% of the small problems (sum ≤ 10), but only in 47% 

of the large problems (10 < sum < 18), adults reported the use of a retrieval strategy. Surprisingly, 

even in the small problems that were classified as retrieval, a problem-size effect was observed, 

which was incompatible with the idea of direct retrieval as a sole strategy. The authors interpreted 

this result in light of other retrieval-based models (Ashcraft, 1992; Campbell, 1987; Siegler & 

Shrager, 1984). For example, Siegler and collaborators attributed the difference in retrieval 

latencies to the acquisition history of each problem (Siegler & Jenkins, 1989; Siegler & Shrager, 

1984). More specifically, each single addition is associate initially with both correct and incorrect 

results and, during learning, the correct results are straightened, therefore producing a more 

peaked distribution, centered on the correct result. Because the frequency of numbers (Dehaene 

& Mehler, 1992) and operations (Hamann & Ashcraft, 1986) decreases as a function of magnitude, 

smaller problems are more likely to have a peaked distribution and consequently be solved by 

direct retrieval (due to higher confidence associated with the retrieved result), whereas larger 

problems presumably have flatter distributions and therefore are more likely to be solved by 

counting of other reconstructive strategies. However, this model does not fully explain the 

problem-size effect in calculations solved by supposedly direct retrieval. An alternative model by 

Ashcraft and colleagues (Ashcraft, 1992; Ashcraft & Battaglia, 1978) proposed that the 100 single-

digit additions are stored as a tabular representation in the memory network, where rows and 

columns represent the operands, and cells represent the sum. When presented with a problem 

such as 4+3=7, subjects adopt a strategy of systematic search along the mental table, beginning 

at 0,0 and progressing outward until the intersection is reached. The authors found that the best 

predictor of subjects’ RT was the square of the sum, which violated the linear relationship between 

the problem-size and RT assumed by the previous counting models. Therefore, they suggested 

that there could be a progressive “stretching” of the mental table as the operands increase, produce 

a non-linear slowdown of the continuous search, thus explaining the presence of a problem-size 

effect in the context of a retrieval strategy.  

It is important to note that retrieval-based models suggest that adults also use 

supplementary strategies (Lefevre & Kulak, 1994; Siegler, 1987; Zbrodoff & Logan, 2005) to solve 
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simple arithmetic problems. For instance, Butterworth, Zorzi, Girelli, & Jonckheere and (2001) 

proposed that, given the commutativity of addition, only half of the table has to be stored in long-

term memory (problems in which the first operand is larger than the second, which could be 

progressively committed to memory, as a result using the min counting strategy at a younger age). 

To solve problems presented in the opposite order (e.g., 2+7), subjects would reorder the operands 

prior to retrieval. In accord with this notion of reordering, they showed that adults’ RTs for 

additions were indeed found to be higher when the first operand was smaller.  

In summary, it has been historically agreed that educated adults solve elementary 

arithmetic problems primarily by direct fact retrieval and that the problem-size arises from 

structural and functional features of the long-term memory network (Ashcraft, 1992; Ashcraft & 

Battaglia, 1978; Campbell, 1987; LeFevre, Sadesky, & Bisanz, 1996; Siegler & Shrager, 1984; 

Stazyk, Ashcraft, & Hamann, 1982); which are potentially linked to a more latent variable of 

problem-difficulty, that would be coincidentally associated with the size of the operands (Ashcraft, 

1992).   

 

1.3.1.2  Calculation as movement along the mental number line 

A series of recent findings have begun to challenge the retrieval-based account for additions 

and subtractions in favor of a model that relies on quantity manipulation, possibly on a mental 

number line (Barrouillet & Thevenot, 2013; Dehaene & Changeux, 1993; Fayol & Thevenot, 2012; 

Knops, Viarouge, Dehaene, et al., 2009; Knops, Thirion, Hubbard, Michel, & Dehaene, 2009; 

Mathieu, Epinat-duclos, Sigovan, et al., 2017; Mathieu, Gourjon, Couderc, Thevenot, & Prado, 

2016; McCrink, Dehaene, & Dehaene-Lambertz, 2007; Restle, 1970; Uittenhove, Thevenot, & 

Barrouillet, 2016). This model can be conceptualized as refinements of the simple 

counting/summation based models.  

Fayol and Thevenot (2012) designed a task in which subjects had to solve additions, 

subtractions and multiplications. In some of the trials, the operation sign was presented 150 ms 

before the operands. Results showed a significant priming effect of the operation sign on RTs, but 

only for additions and subtractions. This effect was present even in single-digit additions, but 
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absent in tie problems. The authors suggested that differently from multiplications and tie 

problems, which are probably solved by direct fact retrieval, the abstract procedures underlying 

additions and subtractions can be pre-activated by the operation sign and therefore facilitate 

subsequent computation. Because of the effect of practice, these procedures could increasingly 

become automatized and be even faster than direct retrieval. This hypothesis was originally 

suggested by Baroody (1983), but did not achieve much acceptance when the retrieval-based 

models were dominant, probably because no precise mechanism was specified. More recently, using 

a large sample of subjects, Barrouillet and Thevenot (2013) and Uittenove, Thevenot  and 

Barrouillet (2016) reported an almost perfect monotonic increase of RT as a function of problem-

size in small additions (sum ≤ 10), with a slope of 20 ms per unit. These results pose a serious 

challenge for retrieval-based models, even when considering possible effects of frequency of 

exposure. As noted by Barrouillet and Thevenot (2013), during lexical decision task, dramatic 

differences in word frequency (from about 3,000 to 60 per million) give rise to only very small 

differences in RTs (~15 ms) (Ferrand et al., 2011). In contrast, different addition problems can 

have much larger RT differences, even when they probably have much smaller differences in 

frequency: for example, the authors observed a difference of ~90 ms between the problems 2+1 

and 2+4. Therefore, in line with Baroody’s hypothesis, they proposed that simple additions are 

solved through a mechanism of fast automated procedures that could take a form of compiled 

programs (Anderson, 1983) of scrolling on an ordered representation, such as the mental number 

line.  

The ANS allows not only to instantly grasp the approximate number of objects present in 

a scene and compare them, but also to perform approximate additions and subtractions, which 

are also found to be present in human infants (McCrink & Wynn, 2004; Wynn, 1992) and can be 

trained in nonhuman primates (Cantlon & Brannon, 2007; Cantlon, Merritt, & Brannon, 2016; 

Livingstone et al., 2014). Importantly, like basic numerical processing, behavioral performance in 

approximate calculation with both non-symbolic and symbolic formats can be described by Weber-

Fechner’s law (Barth et al., 2006; Dehaene, 2007). To investigate the approximate calculation in 

adults more precisely, McCrink et al. (2007) presented subjects with short movies, in which a first 
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set of dots (n1) flowed behind an occluder, followed by a second set of dots (n2) that flowed either 

behind the occluder like the first one (representing additions) or out from the occluder 

(representing subtraction). The dots moved relatively fast to prevent exact counting. The occluder 

then shrank and disappeared to reveal a proposed outcome set (n3), which subject had to judge 

if it was correct or incorrect. By continuously varying the magnitude of n3, the authors could 

model the behavioral responses with psychophysics. In line with Weber’s law, they indeed found 

that the standard deviation of n3s judged as correct increased as a function of the sum. 

Surprisingly, although the mean also increased with the sum, it was systematically biased towards 

larger results in additions and towards smaller results in subtractions. This so-called operational 

momentum effect (OM) resembles a previously described representational momentum, observed 

when subjects estimate the position where a moving object stops - estimations are biased towards 

the direction of the movement (Freyd & Finke, 1984) - which was also found in other internal 

continua, such as action (Ashida, 2004) and sound pitch (Freyd, Kelly, & DeKay, 1990). Therefore, 

McCrink et al. (2007) suggested that additions and subtractions are performed by respectively 

rightward or leftward displacement on the spatially-organized mental representation of numbers.  

Furthermore, the neural circuitry underlying mental calculation tightly overlaps with LPC 

regions involved in the control of attention and saccadic eye movements, possibly by a mechanism 

that implements a form of vector addition between eye-centered (retinotopic) and eye-position 

information (Pouget, Deneve, & Duhamel, 2002). Knops, Thirion, et al. (2009) reasoned that a 

similar mechanism could have been co-opted during evolution to perform arithmetic calculations. 

Corroborating this hypothesis, they showed that a classifier trained to discriminate left vs. right 

saccadic eye movements based on human fMRI activity in the superior parietal lobe (SPL) could 

significantly generalize to classify approximate subtractions vs. additions, respectively (Knops, 

Thirion, et al., 2009) (Figure 1.5f). Interestingly, a recent study showed that merely perceiving a 

“+” sign can elicit activity in brain regions engaged in the orienting of spatial attention (Mathieu, 

Epinat-duclos, Sigovan, et al., 2017).  

Although the OM effect was first observed in non-symbolic arithmetic, subsequent studies 

showed that it is also present in symbolic arithmetic (Knops, Viarouge, Dehaene, et al., 2009) 
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even in small single-digit problems (Pinhas & Fischer, 2008), suggesting that exact and 

approximate additions and subtractions could rely on a shared fundamental mechanism of 

movement along the mental number line. This hypothesis, which resonates with Restle (1970), is 

appealing and compatible with other models based on counting/summation (Groen & Parkman, 

1972), fast automated procedures (Barrouillet & Thevenot, 2013; Uittenhove et al., 2016), and 

even with the retrieval through a tabular search model by Ashcraft and Battaglia (1978). However, 

it still needs to be thoroughly tested and specified in both behavioral and neural levels.  

 

1.4  Brain networks for arithmetic processing 

1.4.1  The Triple-Code model 

The classical Triple-Code model of numerical cognition (Dehaene, 1992), which was 

initially proposed based on converging evidence from human and animal behavioral studies 

together with neuropsychological case studies, proposes the existence of three interactive and 

partially independent codes for representing numbers, namely analog (correspondent to the ANS), 

symbolic (exact representation, i.e., Arabic numerals) and verbal (exact representation rooted in 

language processing i.e., number words). The analog code allows for approximate calculations, the 

verbal code for fact-retrieval based calculations (e.g., the multiplication table), and the symbolic 

code for procedure-based multi-digit calculations. In light of a series of subsequent double-

dissociations found in brain-damaged patients and interpreted according to the Triple-Code model, 

Dehaene and Cohen (1995) proposed putative brain networks for arithmetic processing (Figure 

1.5a). The main network comprised the lateral parietal cortex (LPC), engaged in numerosity 

representation and the ventral temporal cortex (VTC), involved in the recognition of numerical 

symbols (including a possible selective region to Arabic numerals; the ‘number form area’). 

Arithmetic calculations would therefore be performed by an interplay between these main hubs 

and auxiliary brain regions associated with executive functions and working memory (basal ganglia 

and dorsolateral prefrontal cortex, DLPFC), declarative and semantic memory formation (medial 
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and lateral temporal cortex), and allocation of attentional resources for goal-directed problem 

solving (PFC).  

 

 

Figure 1.5 Brain networks for arithmetic processing 
A) Putative brain networks involved in arithmetic, predicted by the Triple-Code Model (Dehaene, 
1992) and inferred from a series of double dissociations found in neuropsychological patients 
(Dehaene & Cohen, 1995). B) An ALE meta-analysis with fMRI studies showing brain regions 
involved in arithmetic processing, confirming the neuropsychological predictions. Note that the 
networks largely overlap with the neuropsychological predictions. Adapted from Arsalidou and 
Taylor (2011). C) Univariate contrast between number words and baseline, generated with the 
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open source platform from Jack Gallant’s lab, which uses fMRI data collected from subjects while 
listening to natural speech narratives (Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016) 
https://boldpredictions.gallantlab.org/. The networks overlap with the ones showed in A and B. 
D) Results from an fMRI study showing brain regions engaged when professional mathematicians 
evaluate auditory presented math statements involving high-level concepts (blue) largely 
overlapping with the networks showed in A and B and dissociating from regions engaged by the 
evaluation of non-math domain-general statements (green). The math networks again largely 
overlap with the ones from A and B. Adapted from (Amalric & Dehaene, 2016). E) Results 
showing increasing BOLD activity in the IPS as a function of arithmetic problem-difficulty in 
both congenitally blind and sighted subjects. Interestingly, a similar parametric modulation was 
found in the visual cortex of congenitally blind subjects. Adapted from Kanjlia, Lane, Feigenson, 
& Bedny (2016). F) fMRI decoding study, showing that a classifier trained on discriminating left 
vs. right saccadic eye movements from the activity in the SPL significantly generalized to classify 
non-symbolic subtractions vs. additions, respectively. Adapted from (Knops, Thirion, et al., 2009).  
 

Remarkably, this canonical brain network for arithmetic processing predicted by Dehaene 

and Cohen (1995) was largely confirmed by several subsequent fMRI studies (Chochon, Cohen, 

van de Moortele, & Dehaene, 1999; Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Menon, 

Rivera, White, Glover, & Reiss, 2000; Rickard et al., 2000; see  Menon, 2014 for a recent review). 

The results were summarized in an activation likelihood estimation (ALE) meta-analysis (Laird 

et al., 2005), using 52 studies with a variety of calculation tasks (Arsalidou & Taylor, 2011, Figure 

1.5b). The LPC network was later proposed to be subdivided in three circuits, namely the 

horizontal portion of the IPS (selectively associate with number comparison and calculation); the 

superior parietal lobe (SPL), engaged in visual-spatial processing and orienting of attention during 

calculation; see Knops, Thirion, et al., 2009) and the left angular gyrus (lAG), supposedly involved 

in verbal number processing such as fact-retrieval (Dehaene, Piazza, Pinel, & Cohen, 2003).  

Furthermore, the main regions associated with arithmetic processing were also recently 

found to be active when subjects passively listened to number words from narratives (Huth, de 

Heer, Griffiths, Theunissen, & Gallant, 2016, Figure 1.5c) and when patients communicated 

numerical information with their doctors though natural speech (Dastjerdi, Ozker, Foster, 

Rangarajan, & Parvizi, 2013). More impressively, a recent study found a large overlap between 

regions engaged in basic arithmetic processing (symbolic numeral identification and calculation) 

and regions activated when professional mathematicians reflected upon high-level mathematical 
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concepts (Amalric & Dehaene, 2016): professional mathematicians and equally educated controls 

(humanities) were asked to judge the correctness of a series of auditory presented statements 

involving either high-level mathematical concepts from several fields (analysis, algebra, topology, 

and geometry; e.g., “A smooth function whose derivatives are all non-negative is analytic”) or non-

math domain-general knowledge (e.g., “In Ancient Greece, a citizen who could not pay his debts 

was made a slave.”). The brain networks found in professional mathematicians during high-level 

mathematics largely overlapped with the one elicited by basic number processing (comprising the 

VTC, IPS and DLPFC) and almost perfectly dissociated from brain regions activated during non-

math statements evaluation, which involved semantic-related language areas in the inferior 

parietal and anterior temporal cortices (Figure 1.5d). Therefore, Amalric & Dehaene (2016) 

suggested that high-level mathematics could have recycled (Dehaene & Cohen, 2007) brain regions 

that were originally selected during evolution to perform elementary arithmetic. 

 

1.4.2  Arithmetic processing in the dorsal and ventral pathways  

The original hypothesis postulated by the Triple-Code model, which has been dominant 

in the field, is that the IPS and SPL are the main hubs for the calculation mechanisms per se and 

that the VTC has a specific role in the visual recognition of numerical symbols (Dehaene & Cohen, 

1995; Menon, 2014). Accordingly, it has been found that the activity in the IPS monotonically 

increases as problems become bigger/harder, reflecting the classical behavioral problem-size effect. 

(De Smedt, Holloway, & Ansari, 2011; Dehaene et al., 1999; Kanjlia, Lane, Feigenson, & Bedny, 

2016; Molko et al., 2003; Visscher et al., 2015, Figure 1.5e). Additionally, as mentioned in the 

previous section, arithmetic operation types (additions vs. subtractions) could be decoded from 

SPL activity (Knops, Thirion, et al., 2009). As far as the VTC is concerned, a recent study using 

electrocorticography (ECoG) have confirmed the existence of neuronal populations in the bilateral 

posterior inferior temporal gyrus (pITG) that selectively activate during visual identification of 

Arabic numerals (the ‘number form area’, NFA), as compared to other similar morphometric 

symbols such as letters (Shum et al., 2013, Figure 1.6a). Follow-up fMRI studies reported similar 

selectivity to Arabic numerals in the VTC (Yeo, Wilkey, & Price, 2017).   
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However, the activity pattern observed in the pITG during arithmetic processing seems to 

be much richer than what has been proposed. First, Abboud et al. (2015) trained congenitally 

blind subjects to recognize the symbols I, V and X which were transformed into sound using a 

visual-to-music sensory-substitution device. The transformed symbols also carried color 

information (blue, red and white). Next, the authors measured fMRI activity from trained subjects 

while they were asked to identify the identity either the Number (Roman numerals), Letter or 

Color of the stimuli. The contrast between Number vs. Letter and Color revealed a significant 

activity in the right pITG, largely overlapping with the ECoG sites reported by Shum et al. (2013), 

thereby showing that the number-related activity in the pITG is not exclusively visual (Figure 

1.6b). Secondly, in the study of Amalric and Dehaene (2016), the authors observed that the 

contrast between math and non-math statements in mathematicians activated the bilateral pITG, 

which intersected with the several contrasts involving arithmetic processing from a visual localizer 

task (number vs. other pictures and calculation vs. sentence processing). Critically, the math 

statements were presented in the auditory modality and did not contain any number words, again 

indicating that the pITG is not merely a visual processor. Last, a recent ECoG study have teased 

apart the responses to arithmetic processing of two different neuronal populations just a few 

centimeters apart from each other, within the pITG. Daitch et al. (2016) asked participants to 

solve three tasks: symbol identification (Arabic numerals, letter from the Latin alphabet and 

letters from foreign alphabets), additions vs. memory verification (15+3=17 vs. ‘I ate fruit 

yesterday’), and single-digit additions in which the elements were sequentially presented (Figure 

1.6d). They first observed some VTC sites that were selective to Arabic numerals in the symbol 

identification task (the NFA). However, adjacent sites that did not show any significant response 

to isolated Arabic numerals, were highly selective to addition problems, as compared to memory 

statements in the second task. Crucially, during sequentially presented additions, the same sites 

responded stronger and in some cases exclusively to the second operand and the proposed result, 

which are critical periods when number manipulation is required (see also Hermes et al., 2015). 

The authors also observed a high functional connectivity between the pITG calculation-selective 

sites and sites in the anterior IPS that were also selective to calculation (Figure 1.6e).  
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Figure 1.6 Arithmetic processing in the ventral temporal cortex 
A) Selective ECoG responses for Arabic numerals as compared to other morphometric similar 
objects in the human pITG. Adapted from (Shum et al., 2013). B) fMRI study with congenitally 
blind subjects. The task required subjects to name either the Number, Letter or Color of the 
symbols I, V and X, which were transformed into sound using a visual-to-music sensory-
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substitution device. The activation in the pITG represents the contrast of Roman numerals vs. 
Letter and Colors. Adapted from (Abboud et al., 2015)C) Results from an fMRI study showing 
an overlap (yellow) between regions more activated for number vs. other pictures (green; 
mathematicians and controls in a visual localizer task), calculation vs. sentence processing (blue; 
mathematicians and controls in a visual localizer task) and math vs. non-math statements (red; 
statements where presented in the auditory modality). Adapted from (Amalric & Dehaene, 2016). 
D) ECoG responses in an exemplar subject with coverage in both VTC and LPC. The HFB 
activity in adjacent neuronal populations to the NFA - also within the pITG – and in the anterior 
IPS is selective to the second operand and proposed result in a sequentially presented single-digit 
addition task. In contrast, control regions in the lateral occipital gyrus (LOG) and medial fusiform 
gyrus (mFG) respond to all elements of the calculation. E) The same exemplar subject as in D, 
showing higher correlations of HFB activity between the aIPS and the calculation selective site in 
the pITG, during calculation (math) and rest vs. sentence comprehension (memory) conditions. 
D and E are adapted from (Daitch et al., 2016).  
 

In summary, these results suggest that pITG might be involved in mathematical processing 

beyond visual recognition of numbers, which is not predicted by current neurocognitive models of 

arithmetic and surprising given the traditional view of the VTC as the last stage of the ventral 

‘what’ visual pathway, associated with object categorization (Grill-Spector & Weiner, 2014). 

However, all the studies that investigated the role of pITG in arithmetic processing so far were 

restricted to either contrasts between numerals and similar morphometric symbols or between 

calculation and other tasks (e.g., memory/sentence comprehension), thus never testing if, how and 

when the activity in pITG is modulated by numerical features of calculations. Consequently, the 

precise role of VTC in mathematical cognition remains largely elusive. 

 

1.5  Introduction to the experimental contributions  

One of the most fundamental problems in psychology is to characterize the series of 

successive processing stages underlying a given cognitive task. The traditional approach, which 

dates to Donders in the late 19th century (Donders, 1969), is mental chronometry. This approach 

uses RTs to infer the dynamics of mental operations. The core assumption is that RT indexes the 

duration of the operations, and in turn their complexity. If the operations are serial, RT would 

reflect the sum of their durations, and if they run in parallel, RT would reflect the duration of the 
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slower operation. Therefore, by manipulating experimental factors that would affect the processing 

time of specific operations, one can examine whether they unfold serially or in parallel (Dehaene, 

1996; Sternberg, 1969, 2013). RTs can also reveal more specific patterns – for example, the 

psychological refractory period effect, PRP (Pashler, 1984; Sigman & Dehaene, 2005) is typical to 

situations where two tasks have initial stages that can run in parallel followed by a central 

bottleneck process.  

Nevertheless, reaction time is only a summary measure: it reflects aggregate, thus indirect, 

information about the nature of the underlying operations. It can only be used to indirectly inform 

about serial vs. parallel implementation and the relative durations of each stage, but it is 

completely blind to the order in which the operations were executed and their absolute timing.  

Since my goal in the present dissertation was to investigate the neurocognitive mechanisms 

of arithmetic calculations and how the unfold over time and across the brain, I chose a 

multimethod approach that combined continuous measurement of behavior, intracranial 

electroencephalography (iEEG), and machine learning applied to magnetoencephalography (MEG) 

signals. In following section, I briefly introduce the main advantages and limitations of each 

method and finally I provide an overview of how they helped me examine the specific questions 

that guided this work.  

 

1.5.1  Methodology 

1.5.1.1  Trajectory tracking 

 Recently, a new continuous behavior method was introduced, potentially offering a more 

direct solution to the problem of parsing the processing stages involved in cognitive tasks: 

trajectory tracking. In a typical setting, subjects respond by pointing from a fixed ‘start’ point to 

a given target location, either with their finger or with the mouse, and the full pointing trajectory 

is recorded as a series of time stamped x and y (and sometimes z) coordinates (Buc Calderon, 

Verguts, & Gevers, 2015; Dotan & Dehaene, 2013; Finkbeiner, Song, Nakayama, & Caramazza, 

2008; Freeman & Ambady, 2010; Resulaj, Kiani, Wolpert, & Shadlen, 2009; Santens, Goossens, 
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& Verguts, 2011; Song & Nakayama, 2009). The core assumption is that the pointing trajectory 

reflects the ongoing cognitive activity. Therefore, analyzing the trajectories during the evolution 

of the trial can inform about the cognitive states at each time point, thus revealing the succession 

of processing stages (Berthier, 1996; Dotan & Dehaene, 2016; Dotan, Meyniel, & Dehaene, 2017; 

Erb, Moher, Sobel, & Song, 2016; Fitts, 1954; Friedman, Brown, & Finkbeiner, 2013; Resulaj et 

al., 2009). Indeed, trajectory tracking has proved to be a powerful method to investigate covert 

stages involved in decision-making (Buc Calderon, Dewulf, Gevers, & Verguts, 2017; Dotan, 

Meyniel, et al., 2017; Friedman et al., 2013; Lepora & Pezzulo, 2015; Scherbaum, Dshemuchadse, 

Fischer, & Goschke, 2010; Zgonnikov, Aleni, Piiroinen, O’Hora, & di Bernardo, 2017), subjective 

confidence estimation (Dotan, Meyniel, et al., 2017; Van Den Berg et al., 2016), cognitive control 

(Erb et al., 2016), number processing (Dotan & Dehaene, 2013, 2016; Dotan, Friedmann, & 

Dehaene, 2014; Faulkenberry, Cruise, Lavro, & Shaki, 2016; Marghetis, Núñez, & Bergen, 2014; 

Santens et al., 2011; Song & Nakayama, 2008), and syntactic processing (Al-Roumi, Dotan, Yang, 

Wang, & Dehaene, 2017).  

Although very promising, the specific methods to maximally and unambiguously extract 

information from trajectory tracking are still under development. Current approaches rely on 

several assumptions that need to be carefully verified and potential biases related to motor activity 

and geometric factors must be taken into account. In collaboration with Dror Dotan and Stanislas 

Dehaene, I am working on a methodological paper (Dotan, Pinheiro-Chagas, & Dehaene, 2017) in 

which we describe the methods that we have been using (and critically compare to alternative 

approaches), which are implemented in an open source Matlab Toolbox ‘TrajTracker’, specifically 

developed to analyze trajectory tracking data (http://trajtracker.com).  

 

1.5.1.2  Electrocorticography 

 The advent of neuroimaging methods, combined with behavioral measures, contributed to 

a remarkable improvement in our understanding of human cognition (Krakauer, Ghazanfar, 

Gomez-Marin, MacIver, & Poeppel, 2017). Typically, neuroimaging studies either use fMRI to 

investigate the functional maps or EEG/MEG to characterize the brain dynamics of cognitive 
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functions. However, the poor temporal resolution (and centimeter-scale spatial resolution) of fMRI 

and the poor spatial resolution of EEG/MEG impose a critical barrier to examine human cognition 

at a fine-grained level. Recently, this barrier started to be partially overcome by the blossoming 

of intracranial EEG or ECoG in cognitive neuroscience. The implantation of intracranial electrodes 

in human subjects occurs for medical proposes exclusively, in order to precisely localize and 

subsequently remove the source of seizures in the brain of patients suffering from medication-

resistant forms of epilepsy. After implantation, these patients stay approximatively 6 to 10 days 

in the hospital with their brain activity constantly monitored. During this period, they are invited 

to participate in several cognitive experiments, which last about 2 to 3 hours per day and they 

typically report enjoying the interactions. Invasive recordings provide a unique opportunity to 

directly measure human brain activity with high signal-to-noise ratio, in a wide range of 

frequencies and with combined high temporal and spatial resolution (millimeter scale). ECoG has 

provided major advances in several fields, such as face processing (Parvizi et al., 2012), memory 

(Foster, Dastjerdi, & Parvizi, 2012), speech perception and production (Riès et al., 2017; Tang, 

Hamilton, & Chang, 2017), syntactic processing (Ding, Melloni, Zhang, Tian, & Poeppel, 2015), 

executive functions (Fonken et al., 2016; Voytek et al., 2015), attention (Daitch et al., 2013), 

arithmetic (Daitch et al., 2016; Hermes et al., 2015; Shum et al., 2013), etc.  

Although ECoG solves the spatial vs. temporal tradeoff problem, it is also important to 

note several of its limitations. Since it is used for medical purposes, the scientist cannot choose 

how many and which sites to record from. Furthermore, it is often the case that the electrodes’ 

coverage is sparse and restricted to a given brain region, thus making difficult to reproduce the 

results across many subjects. Finally, since the volunteers are in the process of preparing 

themselves for a brain surgery, the experimental designs must be simplified and the number of 

trials greatly reduced. 

 

1.5.1.3  Time-resolved multivariate pattern analysis 

Machine learning is flourishing in all domains of science and technology because of its 

exceptional predictive power. When applied to time-resolved brain signals in the framework of 
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decoding (King & Dehaene, 2014) and representational similarity analysis (RSA) (Kriegeskorte & 

Kievit, 2013), multivariate pattern analysis (MVPA) can be used to characterize the series of 

processing stages and mental transformations during cognitive tasks. Decoding analysis is typically 

implemented as a series of multivariate estimators aimed at predicting a vector of labels (y) from 

a matrix of features composed by single-trial EEG/MEG amplitude signals (X, shape = ntrials × 

nsensors x 1time sample. This procedure is then repeated for each time sample separately. One can also 

test if an estimator fitted across trials at time t can accurately predict the y value at time t’, 

therefore probing whether the coding pattern is similar between times t and t’. This procedure is 

known as the ‘temporal generalization method’ (King & Dehaene, 2014). RSA analysis are 

typically implemented by (1) calculating a dissimilarity matrix based on the pairwise correlation 

between experimental conditions across EEG/MEG sensors and (2) correlating the observed 

matrix with theoretical dissimilarity matrices derived from the stimuli features. This procedure 

can also be repeated for each time sample separately. By testing the precise times in which a given 

mental content becomes decodable from or correlates with brain activity, these methods can shed 

light on the temporal evolution of the underlying neural codes. Time-resolved MVPA has been 

successfully applied to characterize the spatial-temporal dynamics of several cognitive functions, 

such dual-task interference (Marti, King, & Dehaene, 2015), attention (Brandman & Peelen, 2017; 

Kaiser, Azzalini, & Peelen, 2016), working memory (King et al., 2016; Trübutschek et al., 2017; 

Wolff, Jochim, Akyürek, & Stokes, 2017), reward value (Bach, Symmonds, Barnes, & Dolan, 2017), 

taste perception (Crouzet, Busch, & Ohla, 2015), object processing (Carlson, Hogendoorn, Kanai, 

Mesik, & Turret, 2011; Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & Oliva, 

2014; Isik, Meyers, Leibo, & Poggio, 2014), written and spoken language (Chan, Halgren, 

Marinkovic, & Cash, 2011; Kocagoncu, Clarke, Devereux, & Tyler, 2017), etc. It has recently been 

shown that MVPA exceeds the capacity of traditional evoked related potentials (ERP) univariate-

level analysis to reveal fine-grained representations (Pantazis et al., 2017). 

However, decoding results must be interpreted carefully, since the features used by the 

machine to learn about the task could be different than the ones used by the brain. Combining 

decoding with RSA, which explicit specify the relevant stimulus features, is therefore 
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recommended (Cichy et al., 2014), and robust cross-validation schemes must be used to ensure 

reproducibility and avoid overfitting (Varoquaux, 2017).  

 

1.5.2  Overview of this dissertation 

The dissertation is organized in three main chapters, corresponding to the three studies 

that I conducted in collaboration with Dror Dotan, Amy Daitch, Josef Parvizi, Manuela Piazza 

and Stanislas Dehaene.  

In Chapter 2, I present a novel application of the trajectory tracking method to investigate 

simple arithmetic, with the goal of overcoming the limitations inherent to the mental chronometry 

approach, which has dominated the field during the past four decades. Subjects solved single-digit 

additions and subtractions on a tablet computer, and responded by pointing to the position of the 

result on a horizontal number line, while their finger trajectory was continuously monitored. By 

applying a series of successive multiple regression models, in which the dependent variable was 

the position of the finger at each time point and the predictors were several features of the 

calculation (e.g., first and second operands, the operation sign, etc.), I characterize the series of 

covert processing stages underlying mental calculation.  

In Chapter 3, I investigate at a fine-grained level the neural correlates of the some of the 

mechanisms identified in Chapter 2. I was specifically interested in re-evaluating the functional 

roles of the main hubs for arithmetic processing in the LPC and VTC, in light of the recent 

hypothesis that the VTC contains neuronal populations that are selectively engaged in 

mathematical reasoning, above and beyond simple digit recognition. For that, I analyzed ECoG 

signals from a task in which subjects were asked to judge the correctness of visually presented 

additions in a fixed for of ‘13+5=17’, in which we systematically varied the magnitude of the 

operands. This allowed me to test if, how and when the activity in the IPS, SPL and pITG are 

modulated by the arithmetic problem-size.   

In Chapter 4, I examine the neurocognitive mechanism of arithmetic calculations at the 

whole brain level, using time-resolved multivariate decoding and RSA applied to MEG signals. 

Subjects were asked to verify the correctness of additions and subtractions such as ‘3+2=5’, in 
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which the successive symbols were presented sequentially. Results provided a comprehensive 

picture, at the single-trial level, about the temporal evolution of the representational codes 

underlying the operands and a cascade of partially overlapping successive processing stages 

underlying mental calculation and decision-making.  

Finally, in Chapter 5 I summarize, integrate and discuss the original contributions of the 

dissertation, acknowledge the main limitations and outline some of the future directions of my 

research program.  
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  FINGER-TRACKING REVEALS THE COVERT STAGES 

OF MENTAL ARITHMETIC 

2.1  Motivation 

As discussed in the Introduction, the cognitive arithmetic literature has traditionally relied 

on the chronometric properties of the arithmetic problem-size effect to build models of mental 

calculation. But the mental chronometry approach is completely blind to the order and absolute 

timing in which each successive mental operation occurs.  

In the first study of the dissertation, my goal was to overcome this limitation, by 

developing a continuous behavioral method, based on trajectory tracking, to directly observe the 

covert stages involved in combining two numbers into a third. The following main questions 

motivated this study. Are the two operands processed serially or in parallel? And does the 

processing of the operands differ between additions and subtractions? Is there a stage whose 

duration increases linearly with the size of the numerical quantities, as implied by models of 

counting or movement along the mental number line? Can we determine the moment when the 

visuospatial biases underlying addition and subtraction occur? 
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2.2  Abstract 

We introduce a novel method capable of dissecting the succession of processing stages 

underlying mental arithmetic, thus revealing how two numbers are transformed into a third. We 

asked adults to point to the result of single-digit additions and subtractions on a number line, 

while their finger trajectory was constantly monitored. We found that the two operands are 

processed serially: the finger first points towards the larger operand, then slowly veers towards 

the correct result. This slow deviation unfolds proportionally to the size of the smaller operand, 

in both additions and subtractions. We also observed a transient operator effect: a plus sign 

attracted the finger to the right and a minus sign to the left and a transient activation of the 

absolute value of the subtrahend. These findings support a model whereby addition and 

subtraction are computed by a stepwise displacement on the mental number line, starting with 

the larger number and incrementally adding or subtracting the smaller number. 
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2.3  Introduction 

Despite decades of research in cognitive arithmetic, how the brain performs elementary 

arithmetic calculations remains largely unknown. The widely replicable problem-size effect is the 

finding that reaction times (RTs) and error rates increase as a function of the size of the operands 

to be added or subtracted. By investigating the properties of the problem-size effect across 

operations and during development, researchers have proposed different cognitive models of 

arithmetic (Zbrodoff & Logan, 2005). 

In their seminal study, Groen and Parkman (1972) found that the best predictor of single-

digit addition RTs in first graders was the size of the smaller operand (min). They proposed that 

children use a counting strategy to solve additions by starting from the larger operand and then 

incrementing it with the min, with a slope of about 410 ms per unit. A much smaller slope, 

however, was found in adults (20 ms/unit). This seemed too fast for a counting strategy, and the 

authors proposed that adults directly retrieve the results from long-term memory. 

Fact retrieval is thought to be a dominant strategy in adults, but some data show that it is also 

supplemented by other strategies (Lefevre & Kulak, 1994; Siegler, 1987; Zbrodoff & Logan, 2005). 

For instance, Butterworth, Zorzi, Girelli, & Jonckheere and (2001) proposed that, given the 

commutativity of addition, only half of the table may be stored in long-term memory (problems 

in which the first operand is larger than the second, which could be progressively committed to 

memory as a result using the min counting strategy at a younger age). To solve problems presented 

in the opposite order (e.g., 2+7), participants would reorder the operands prior to retrieval. Adults’ 

RTs for additions were indeed found to be higher when the first operand was smaller, presumably 

due to this additional reordering stage. 

Some models propose that arithmetic problems are solved by quantity manipulation, 

possibly relying on an “mental number line” (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). 

Considerable research indicates that children and adults possess such a space-like left-to-right 

numerical representation, and that arithmetic may involve internal movements on this 

representation (Barrouillet & Thevenot, 2013; Dehaene & Changeux, 1993; Fayol & Thevenot, 
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2012; Knops, Viarouge, Dehaene, et al., 2009; Knops, Thirion, et al., 2009; Mathieu et al., 2016; 

McCrink et al., 2007; Restle, 1970; Uittenhove et al., 2016). Accordingly, mental arithmetic causes 

spatial biases similar to the SNARC effect with single numbers (Dehaene, Bossini, & Giraux, 

1993): addition draws attention and eye movements towards the right side of space, and 

subtraction towards the left (Knops, Viarouge, Dehaene, et al., 2009; Mathieu et al., 2016; Pinhas, 

Shaki, & Fischer, 2014). There is also a tendency to overestimate the results of addition and to 

underestimate the results of subtractions, which can be interpreted as an excessive motion on the 

number line and has therefore been termed the “operational momentum” (OM) effect (Knops, 

Viarouge, Dehaene, et al., 2009; McCrink et al., 2007). However, it is still unknown whether those 

effects betray a genuine use of the number line during calculation, or merely an automatic 

attraction to the result after it has been calculated. 

Progress in understanding mental arithmetic is impeded by the fact that RTs and error 

rates provide only a single summary measure of the entire calculation process, blind to the 

succession of intermediate stages. Here, we introduce an on-line measurement method that 

addresses this temporal dissection problem: continuous finger tracking (Dotan & Dehaene, 2013, 

2015; Song & Nakayama, 2009; see also Freeman & Ambady, 2010 for a similar approach with 

mouse tracking). Participants solved single-digit additions and subtractions on a tablet computer, 

and responded by pointing to the position of the result on a horizontal number line ranging from 

0 - 10, while their finger trajectory was continuously monitored. By identifying which cognitive 

factors affect finger location at each time point, we aimed to answer several questions: Are the 

two operands processed serially or in parallel? Is there a stage whose duration increases linearly 

with the size of the numerical quantities, as implied by models of counting (min) or motion on 

the number line? Can we visualize a reordering of the two operands when solving additions, as 

predicted by the comparison model? And can we determine the moment when the visuo-spatial 

biases underlying addition and subtraction occur?  
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2.4  Methods 

Thirty right-handed French adults, aged between 20 and 45 (mean = 24; sd = 5) 

participated in the study. The participants saw a series of single-digit addition and subtraction 

problems on a tablet computer and were instructed to point at the position of the result on a 

horizontal number line marked with 0 and 10 at its extremities (see Figure 2.1). On each trial, 

participants first touched an initiation rectangle, which made a fixation cross appear above the 

middle of the number line. When participants started moving their finger towards the number 

line, an arithmetic operation appeared at fixation for 250 ms. Participants then continued moving 

their finger to what they judged to be the position of the result. When the finger reached the 

number line, a feedback arrow indicated the location where the finger landed.  

 

 

Figure 2.1 Finger-tracking task and screen layout 
 

Using an Apple iPad-2 in landscape orientation, finger position was sampled at 60 Hz (1 

ms accuracy), resampled at exactly 100 Hz using cubic spline interpolation, and smoothed 

(Gaussian, σ = 20 ms). For each time point, we calculated the instantaneous direction as the 
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vector difference between the finger coordinates at times t-10 ms and t, and the implied endpoint 

(iEP) as the position on the number line that the finger would reach if it kept moving straight in 

this direction.  

The experiment included two blocks, presented in random order, both mixing single-digit 

additions and subtractions (individual digits were also presented, but are not reported here). The 

blocks were designed to control for possible confounds in the analyses of the OM effect. Block 1 

included all single-digit addition and subtraction problems with matched operands between 1 and 

9 (e.g., 4+3 and 4-3), resulting in 25 additions with larger-first operand (denoted L+S, where L 

is the larger and S the smaller number) and 25 subtractions (L-S). Each problem was repeated six 

times, for a total of 300 trials. In this block, addition results are generally larger than subtraction 

results, and thus the presence of an OM effect could be due to this bias. As a control, we therefore 

used matched results in block 2. We started from the 54 additions and 45 subtractions with 

operands ranging from 0 to 9 and results ranging from 1 to 9 (thus including L+S, S+L, and L-S 

problems). If each problem appeared exactly once, the distribution of addition and subtraction 

results would again be asymmetrical. Therefore, we over-repeated some problems to obtain exactly 

20 addition and 20 subtraction trials for each of the results 1-9 (total of 360 trials). By construction, 

block 2 contained all the problems presented in block 1. Therefore, the OM effect could be 

investigated in a most unbiased manner by restricting the analysis to addition and subtraction 

problems from block 1 (with identical operands) that were presented in block 2 (with equalized 

distributions of response locations). The two blocks also allowed us to test the stability of our 

findings. 

Trajectory analysis followed the method introduced in Dotan and Dehaene (2013). First, 

for each participant, one regression was run per time point in 30 ms intervals. The dependent 

variable was the iEP. Predictors were the two operands, the operator (- or +, coded as -1 and 1), 

the spatial-reference-points-based bias function (SRP, see Supplementary Materials) and the result 

of the previous trial. The latter two predictors were added in all regressions in order to capture 

maximal variance, as they were significant in previous studies (Dotan & Dehaene, 2013). As their 

effect was virtually identical in all conditions, they are only reported in Supplementary Materials.  
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At a second stage, we compared the b values of the different predictors (paired t-test or repeated-

measures ANOVA). To examine whether a given predictor has a significant group-level effect in 

each time point, we compared the participant’s b values to zero using one-sample t-test. Each b 

value (also called regression weight) provides a quantitative measure of the extent to which each 

element of the operation influences the finger trajectory at each time point. The reported p values 

are one-tailed, since we assumed that all effects of all predictors included would be positive. 

 

2.5  Results  

2.5.1  Movement time 

We first analyzed the overall movement time (MT) from stimulus presentation to number-

line touch (equivalent to RT in oral calculation tasks). In both blocks, MT was longer for 

subtractions compared to additions L+S (Block 1: additions L+S: mean = 966 ms, SD = 118 ms; 

subtractions: mean = 1040 ms, SD = 138 ms; t(29) = -14.72; p < .001; d = -.58. Block 2: additions: 

mean = 982 ms, SD = 127 ms; subtractions: mean = 1,072 ms, SD = 156 ms; t(29) = -12.55; p 

< .001; d = -.64). In agreement with the COMP model of Butterworth et al. (2001), additions 

L+S were solved 14 ms faster than additions S+L (Block 2: additions L+S: mean = 976 ms, SD 

= 128 ms; additions S+L: mean = 990 ms, SD = 125 ms; t(29) = -5.23; p < .001; d = -.11). To 

investigate the problem-size effect, we performed a stepwise multiple regression with MT as the 

dependent variable and the Min operand, Max operand and Result as predictors, separately for 

additions and subtractions in each experimental block. The best predictor of MT was always the 

Min operand (insets in Figure 2.2). For additions, the Min operand had a b value of 26 ms per 

unit (p < .001) in block 1 and of 21 ms per unit (p < .001) in block 2. The Max operand had a 

small but significant negative effect in block 1 (b = 8 ms per unit; p < .001), but a null effect in 

block 2 (p = .895). Finally, the Result had a null effect in both blocks (p = 0.8). For subtractions, 

the Min operand had a b value of 62 ms per unit (p < .001) in block 1 and of 44 ms per unit (p 

< .001) in block 2. The Max operand had a null effect in both blocks (p > 1). Finally, the Result 

had a small but significant effect in both blocks (b = -4.53 ms; p = .002 in block 1 and b = -7.07 
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ms; p < .001 in block 2). Overall, the dominant effect of the Min operand is therefore consistent 

across both blocks and operations.  

 

2.5.2  Accuracy 

Next we analyzed response accuracy, that is, the location where participants landed their 

finger (endpoint) in relation to the ideal location. The endpoint error is the absolute difference 

between the endpoint and the correct result (in numerical units). The endpoint bias is the mean 

difference between the endpoint and the correct result, with positive values indicating rightward 

bias. Subtractions produced larger endpoint errors, but this difference only reached statistical 

significance in block 1 (block 1: additions L+S: mean = .43, SD = .13; subtractions: mean = .47, 

SD = .180; t(29) = -2.47; p = .019; d = -.26. Block 2: additions L+S: mean = .47, SD = .150; 

subtractions: mean = .48, SD = .180; t(29) = -.20; p = .841, d = -.06). Additions L+S produced a 

slight greater leftward endpoint bias compared to subtractions, but this difference was only 

significant in block 2 (block 1: additions L+S: mean = -.12, SD = .16; subtractions: mean = -.06, 

SD = .170; t(29) = -1.24; p = .226; d = -.37. Block 2: additions L+S: mean = -.22, SD = .14; 

subtractions: mean = .02, SD = .160; t(29) = -6.92; p < .001, d = -1.63). Note that this effect is 

the opposite of the OM effect. A comprehensive analysis of the entire time course of the OM effect 

is presented further below (see Figure 2.5), but here we simply note that in block 2 subtractions 

had overall larger first operands as compared to additions (in order to yield matched results), 

which may have dragged responses further to the right for subtractions. No significant differences 

in endpoint error or endpoint bias were found between additions L+S and additions S+L (Block 

2, endpoint error: additions L+S: mean = .45, SD = .15; additions S+L: mean = .47, SD = .160; 

t(29) = -1.95, p = .061; d = -.13; endpoint bias: additions L+S: mean = -.19, SD = .13; additions 

S+L: mean = -.20, SD = .16; t(29) = .59; p = .553; d = .07). Finally, with respect to the problem-

size effect, the Min operand, which was the best predictor of movement times, was also a 

significant predictor of endpoint error in both additions and subtractions in both blocks (block 1 

- additions: b = .41, p < .001, subtractions: b = .43, p < .001; block 2 – additions: b = .44, p 

< .001, subtractions: b = .42, p < .001).  
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Figure 2.2 Reconstructed trajectories averaged across subjects  
Insets show how movement time increases as a function of the Min operand.  
 

2.5.3  Trajectory dynamics 

Next, we analyzed the full trajectories (Figure 3). The first question we considered was 

whether the operands are processed in parallel or serially. In additions with larger operand first 

(L+S), regressions indicated that the finger first moved according to the first operand, and only 

then a significant effect of the second operand emerged. The first operand has a significantly 

higher effect compared to the second starting at 420 ms (p = .017) in block 1 and at 450 ms in 

block 2 (p < .001) and this difference remained significant until the end of the trajectory. 

Remarkably, for additions with smaller operand first (S+L), the order was reversed: the second 

operand (larger number) had a higher weight compared to the first operand (smaller number) 

from 390 ms on (p = .047), compatible with the assumption that the two operands are reordered 

prior to effecting the finger movement. This pattern remained stable until the end of the trajectory. 

In fact, the second operand (larger) deviated from zero at 390 ms (b[signed_op2] = .057, R2 = 

0.036, t(29) = 2.998, p < .034), 120 ms before the effect of the first operand at 510 ms (b[op1] 

= .064, R2 = .020, t(29) = 1.943, p = .030). 
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Figure 2.3 Time course of the regression effects for additions per condition 
A,B) Block 1. C,D,E) Block 2. The b values were averaged over participants and plotted as a 
function of time. The b values were compared to zero (t-test), black dots denote p < .05. Error 
bars represent 95% confidence intervals.  
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In subtractions, a serial effect was again observed. The first operand had a higher effect than the 

second during almost the entire trajectory (from 390 ms on in block 1 and and from 360 ms on in 

block 2). Both operations therefore indicate that the operands are processed serially: participants 

start processing the larger operand followed by the smaller, regardless of the order in which they 

appeared. Additional analyses (see Supplementary Materials) revealed that the finger first moved 

according to the larger operand L at the same time in all arithmetic operations, and then a 

correction was introduced for the smaller operand S at different delays (L+S < S+L < L-S). 

To directly visualize this serial processing pattern, we returned to the individual 

trajectories for specific problems. Figure 4a shows the example of subtraction problems “9-S” 

(where S ranges from 0 to 8), in which we could investigate the full spectrum of results 1-9. The 

plot shows that the finger first deviates towards the right (i.e., in the direction of the larger 

operand 9) and then to the correct result. Additionally, the latter correction seems to be 

progressive, as if the finger goes through intermediate stages. This is most clearly seen for the 

problem 9-8: the trajectory first coincides with that for 9-0, then 9-1, 9-2, etc. To characterize 

these effects, we subtracted consecutive trajectories (9-7)-(9-8), (9-6)-(9-7), etc., and plotted the 

resulting difference trajectories, thus revealing the time course of their divergence (Figure 4b). We 

then examined whether the divergence times increased with the Min Operand. Divergence time 

was measured as the moment when the difference in finger location (Δx) achieved a threshold 

value. Regardless of the particular choice of threshold, regressions indicated that the divergence 

time increased with the number being subtracted (p < .001) with a stable slope of about 60 ms 

per additional unit. Similar results were found for subtractions 8-S, 7-S, 6-S, etc. (slopes = 75, 66, 

68 ms, respectively).In order to test whether the same pattern was also present in additions, we 

selected the problems 5+S and 5-S, since they have the larger range of S that can be matched 

between operations. Both subtractions 5-S (mean slope = 55 ms) and additions 5+S (mean slopes 

= 52 ms) showed a progressive deviation from the larger operand, proportional to the size of the 

Min Operand.  

To investigate the OM effect, we pooled additions and subtractions (Figure 5). In block 1, 

the operator had a significant transient effect from 480 ms to 810 ms (b[operator] > .048, R2 > .005, 
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t(29) > 2.335, p < .013), reaching its peak value at 630 ms (b[operator] = .170, R2 = .014, t(29) = 

8.673, p < .001). 

 

 

 

Figure 2.4 Stepwise-displacement during additions and subtractions 
A,C,E) Reconstructed trajectories per operation, averaged across subjects. B,D,F). Subtracted 
consecutive trajectories. Insets show the divergence time as a function of the number being 
subtracted, for different ΔX coordinate threshold.  
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The effect was positive, indicating that an addition sign transiently distorts the trajectory 

towards the right side of the number line, and a subtraction sign towards the left side, as expected 

from the OM effect. The results remained essentially unchanged when we analyzed the same 

arithmetic problems as in block 1, but now using the data from block 2, i.e., with an unbiased 

distribution of result size for addition and subtraction. There was a significant positive transient 

effect of the operator (210 ms) from 510 ms to 720 ms. (b[operator] > .069, R2 > .009, t(29) > 1.913, 

p = .033), reaching its peak b value at 600 ms (b[operator] = .096, R2 = .008, t(29) = 3.973, p 

< .001) and then progressively dropping until loosing statistical significance at 750 ms.   

An interesting visualization of the OM effect is provided by addition and subtraction 

problems involving zero (x+0 and x-0 problems), which can be directly compared with single-digit 

controls where X alone is presented. As shown in Figure S3, when plotting the implied endpoints 

per time, subtractions show a systematic transient leftward bias, additions a rightward bias, and 

single-digits tend to fall in between. This variant of the OM effect was statistically confirmed in 

a regression analysis comparing additions x+0 and subtractions x-0 (insets in Figure S3). 

 

 

Figure 2.5 Time course of the Operational Momentum effect  
A) Block 1. B) Block 2 with the selected trials of block 1.  
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Interestingly, at about the same time as the effect of the operator, we observed a significant 

transient effect of the absolute value of the second operand in both blocks (block 1: from 330 ms 

on b[abs_2op] = .017, R2 = .003, t(29) = 1.994, p < .028, peak b at 510 ms; block 2 from 510 ms 

to 960 ms, b[abs_2op] > .078, R2 > .012, t(29) > 3.233, p < .001; peak b at 690 ms). The effects 

of b[op1] and b[signed_op2] were highly similar to the ones found in previous regression analyses, 

with the effect of b[signed_op2] delayed as compared to b[op1]. 

In brief, the temporal dynamics of the OM effect revealed a spatial bias induced by the 

operator coinciding with the time that participants are processing the second operand. 

Furthermore, participants also seemed to transiently represent the absolute value of the 

subtrahend.   

 

2.6  Discussion 

 By continuously measuring finger position in an original calculate-and-point task, we 

obtained a detailed picture of the processing stages underlying addition and subtraction. 

Importantly, overall movement time and accuracy replicated previous findings in cognitive 

arithmetic, indicating that our task did not depart radically from previous oral calculation tasks. 

Subtractions were solved slower and less accurately than additions, and within additions, those 

with smaller first operand were solved 14 ms slower than those with larger first operand 

(Butterworth et al. (2001) reported a 13 ms difference). This effect is not trivial, since it runs 

opposite to what could have been predicted in the light of spatial-numerical congruency effects, 

such as the SNARC (Dehaene, Bossini, & Giraux, 1993) - i.e., that additions S+L, where digits 

are in the proper left-to-right order, would be solved faster than L+S.  

In line with Barrouillet and Thevenot (2013) and Uittenhove et al. (2016), we also detected 

a robust problem-size effect in single-digit additions, even with operands in the range 0-4. The 

best predictor of movement time was the smaller operand (Min) in both additions and subtractions. 

The slopes that we found for additions (21 ms per unit in block 1 and 26 ms in block 2) match 

the slope of 26 ms reported by Barrouillet and Thevenot (2013). Finally, subtractions showed a 
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higher problem size effect than additions, also consistent with previous studies (Seyler, Kirk, & 

Ashcraft, 2003). 

 The main contribution of our study is to investigate the covert processing stages underlying 

arithmetic calculations. Regression analyses on instantaneous finger direction allowed us to 

uncover two new effects. First, in both additions and subtractions, the operands were processed 

in a serial way: participants started processing the larger operand, then the smaller operand, 

irrespectively of the order in which they appeared. In particular, we could directly observe a 

reordering in S+L additions, as predicted by the COMP model (Butterworth et al., 2001). The 

presence of an additional reordering stage may also explain why S+L additions were slower than 

L+S additions.  

Comparing each predictor across additions and subtractions further revealed that the 

larger operand is processed at about the same time in all conditions, and then a correction is 

introduced for the smaller operand, at a variable delay (additions L+S < additions S+L < 

subtractions). A possible explanation for the higher delay in subtraction, revealed by regression, 

is that participants transiently represent the absolute value of the subtrahend. One additional 

processing stage may therefore be involved in subtractions: the conversion of the absolute value 

of the subtrahend into a negative number. Additionally, within addition problems, a possible 

explanation for the difference between L+S and S+L additions is that the selection of the smaller 

operand is faster when the numbers are in the appropriate left-to-right order.  

Most importantly, we discovered a possible origin of the Min effect, reflected by a serial 

influence of the size of the second operand on finger trajectories. During an operation such as 9-

8, the finger did not instantaneously point to the result 1, but slowly veered towards it, 

successively pointing to each intermediate location 9-0, 9-1, 9-2, etc. Analysis confirmed that, 

when the second operand increased, the trajectories diverged at increasingly later times: 9-8 

diverged from 9-7 at a later time than 9-7 diverged from 9-6, and so on. Thus, calculation always 

starts with the larger operand and then the correct result is attained in a slow and incremental 

manner, proportional to the Min operand, with a slope of about 50-60 ms per unit.  
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The two serial stages that we identified - first point to the larger operand, then serially deviate 

towards the target number - strongly constrain the models of mental arithmetic that we outlined 

in the introduction. Our results are most compatible with models where arithmetic operations are 

solved by serial quantity manipulation, possibly relying on a mental number line (Dehaene et al., 

1999). They fit precisely with the original Groen & Parkman (1972)’s Min Model of addition, in 

which subjects start with the larger number and count up the smaller quantity. The slope of that 

serial process was thought to be too fast for counting, but the present results do suggest a slow 

and serial incremental process. Its fast speed suggests a series of “jumps” on the mental number 

line, where quantities are chained by successor and predecessor operations, rather than an explicit 

verbal counting process.  

Our finger-tracking task could have biased subjects to use approximation or other 

quantity-based manipulations. This possibility is unlikely, however, given that our movement-

time results converge with classical studies of the problem-size effect (Groen & Parkman, 1972) 

and two of its most recent reexaminations. Using a classical calculation task with oral responses, 

Barrouillet and Thevenot (2013) and Uittenhove et al. (2016) presented robust evidence that 

additions are solved using “fast procedures that scroll an ordered representation such as a number 

line”. The convergence of results suggest that the proposed model may not be restricted to the 

current experimental design, but may be generalized to other methods of measuring mental 

calculation. While previous studies could infer this underlying mechanism only indirectly, from 

the patterns of RT, our method provides a more direct look at the underlying processing stages.  

The hypothesis of a mental displacement in quantity space also accounts for another aspect 

of the results, namely the operational momentum (OM). As previously reported (McCrink et al., 

2007), additions produced a transient bias towards larger numbers and subtractions towards 

smaller numbers. Our results reject the hypothesis that OM originates solely from post-calculation 

processes, when the retrieved result attracts attention left or right. Rather, the present work shows 

that the OM effect coincides with the processing of the second operand, suggesting that movement 

on the number line occurs during the single-digit calculation process. This result concurs with the 

only study that actually investigated the timing of the OM effect during calculation, using mouse 
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tracking rather than finger tracking (Marghetis et al., 2014). It also fits with other studies 

suggesting that the visual-spatial attention system is actively involved in arithmetic calculations 

(Knops, Viarouge, Dehaene, et al., 2009; Knops, Thirion, et al., 2009; Mathieu et al., 2016; 

McCrink et al., 2007; Pinhas & Fischer, 2008). 

Our results impose strong restrictions on retrieval-based models of single-digit additions 

(Ashcraft, 1992; Campbell, 1987; Siegler, 1987; Zbrodoff & Logan, 2005). These models postulate 

a direct access to a memory for arithmetic facts and therefore have no reason to postulate either 

a faster influence of the larger number, a linear effect of the smaller number, or an OM effect. 

Indeed, existing models of arithmetical retrieval typically assume that (1) the ease of retrieval 

depends on the frequency with which a problem has been encountered (Hamann & Ashcraft, 1986); 

(2) after a competition process, only a single result is ultimately selected (Ashcraft, 1992; Campbell, 

1987; Siegler, 1987). Both properties fail to explain why the finger first points to the larger number 

and then slowly veers towards the correct result, in proportion to the min. 

In order to preserve the memory retrieval model, one would have to propose a table-search model 

(Ashcraft & Battaglia, 1978) according to which calculation time reflects a search for the proper 

entry in a stored table of arithmetic facts. For instance, for a problem like 6+3, subjects would 

first identify the larger number (6), then list all 6+x problems, and finally search serially among 

them (6+1=7, 6+2=8, 6+3=9). Such a model is functionally equivalent to the above proposal, 

the only difference being that the movement occurs on a memorized table rather than a number 

line.  

Overall, our findings highlight how a precisely timed series of operations underlies simple 

arithmetic. They also demonstrate that even complex mental operations can be continuously 

reflected in finger-pointing movements, as previously demonstrated in simpler cases (Song & 

Nakayama, 2009). Within the existing methods for investigating covert serial processes (King & 

Dehaene, 2014; Resulaj et al., 2009; Sternberg, 1969; Tanenhaus, Spivey-Knowlton, Eberhard, & 

Sedivy, 1995), finger tracking may play a special role as a simple and powerful behavioral method. 
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2.8  Supplementary Materials 

2.8.1  Regression Analyses 

The spatial-reference-points-based bias function (SRP, defined in equation [1]) and the result of 

the previous trial were added as predictors in all regressions in order to capture maximal variance, 

as they were significant in previous studies using the same method (Dotan & Dehaene, 2013). The 

SRP (or similar functions) was found important in several number-to-position studies and may 

reflect an anchoring on the middle and ends of the number line (Barth & Paladino, 2011; Dotan 

& Dehaene, 2013; Rouder & Geary, 2014; Slusser, Santiago, & Barth, 2013).  
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Overall, the results of these two predictors were very stable across all conditions. Figure 2.6 shows 

the example of the conditions in block 1. While the b[SRP] started around the beginning of the 

trajectory at 400 ms and remained stable with a moderate size (b = .5) until the end of the 

movement, b[R-1] had a small initial effect (b = .2), which vanished around 500 ms This result 

was virtually the same for the conditions present in block 2.  

 

Figure 2.6 Time course for the regression effects of the predictors R-1 and SRP 
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2.8.2  Regression effects of smaller and larger operands. 

To better understand the similarities and differences between additions and subtractions, 

we directly compared the b values between conditions, separately for larger and smaller operands 

(Figure 2.7). To ensure comparability of the results, in block 2 we selected only the subtractions 

that had the same range of operands as in block 1 (larger operand from 2 to 5 and smaller operand 

from 1 to 4). Interestingly, the effect of the larger operand was overall indistinguishable between 

all conditions in both blocks during the entire trajectory (block 1: t(29) > 1.634, p > .066 and block 

2:  F(2,29) > 1.292, p > .059), except for small time windows between 420 – 480 ms and 1230-1290 

ms: F(2,29) < 2.172, p < .038). In contrast, the smaller operand showed significant differences 

between the conditions starting around 400-450 ms. In block 1, b[smaller] was larger in additions 

L+S compared to subtractions (from 450 ms until the end of the trajectory, F(2,29) > 2.29, p < .03). 

In block 2, the ANOVA showed a significant effect from 450 ms to 930 ms (F(2,29) > 2.484, p 

< .0190), with higher values in the additions L+S, followed by additions S+L and then by 

subtractions. In summary, those results indicate that (1) the finger first moves according to the 

larger operand L independently of the arithmetic operation; (2) a correction is then introduced for 

the smaller operand, at a variable delay (L+S < S+L < L-S). To precisely quantify this delay 

calculated the difference in time Δ(t) between b[op1] and b[signed_op2] when they reached a 

value of 0.5, i.e., the middle of the regression curves (a b value of 1 on both operands indicates 

perfect pointing to the result). Subtractions show a larger delay between the first and the second 

operand, compared to both types of additions in block 1 (additions L+S: mean = 107 ms, SD = 

53 ms; additions S+L: mean = 124 me, SD = .59 ms; subtractions: mean = 221 ms, SD = 103 

ms; F(2,28) = 19.520; p < .001) and in block 2 (additions L+S: mean = 109 ms, SD = 37 ms; 

subtractions: mean = 207 ms, SD = 60 ms; t(28) = -8.352; p < .001; d = 2.001). 
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    Block 1 – Matched operands                              Block 2 – Matched Results 

 

Figure 2.7 Comparison of the time course of the regression effects 
The shaded area indicates a significant difference (p < 0.05) 
 

2.8.3  Operational momentum effect in zero-problems 

When selecting only the zero-problems (problems such as x +/- 0), which sometimes are 

referred as a more “pure” measure of the OM effect (Pinhas & Fischer, 2008), we observe a perfect 

organization of the spatial bias (Figure 2.8). In all operations and of both blocks, there is a 

transient stronger leftward bias for the implied endpoints in subtractions as compared to additions 

in the middle parts of the trajectories, which coincides with the transient operator effect that we 

found in the regression analysis (~450 to ~800 ms). Furthermore, for most the results (specially 

in Block 1), single digits fall in between additions and subtractions during this transient period. 

To confirm the OM effect in zero-problems, we pulled together the zero-problems of additions and 
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subtractions and ran a regression model with the operand 1 and the operator as predictors. As 

expected, the operator had a significant transient effect in both blocks (block 1: from 510 ms on 

b[operator] > .038, R2 > .010, t(29) > 1.773, p < .043, peak b at 630 ms; block 2 from 510 ms to 

750 ms, b[operator] > .083, R2 > .016, t(29) > 2.127, p < .021; peak b at 600 ms).  

 

 

Figure 2.8 Operational Momentum effect in zero-problems relative to single-digits  
Subtractions and additions produced a transient leftwards and rightwards bias respectively as 
compared to single digits. Insets show the significant transient effect of the operator in the 
additions and subtractions.  
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  BRAIN MECHANISMS OF ARITHMETIC: A CRUCIAL 

ROLE FOR VENTRAL TEMPORAL CORTEX 

3.1  Motivation 

Mental calculations engage a complex interplay between several brain regions (Arsalidou 

& Taylor, 2011). As revised in the Introduction, the traditional view considers that the LPC 

contains the main hubs engaged in the calculation mechanism per se, and that the VTC plays a 

central role in recognizing Arabic numerals. However, recent findings are converging to the idea 

that VTC might contain neuronal populations involved in other aspects of arithmetic reasoning 

beyond symbol recognition.  

 In Chapter 3, my goal was to re-evaluate the roles of the LPC and VTC in arithmetic 

processing, by recording electrophysiological activity directly from the human brain. Subjects 

implanted with grids of electrodes were asked to verify addition problems in the form of 15+3 

=18, in which we systematically varied the size of the problems (i.e., magnitude of the operands), 

while preserving the same structure and number of characters, thus separating numerical from 

low-level visual features of the stimuli.  

 This allowed me to investigate several questions. First, can we replicate the findings of 

Chapter 2, showing that the unfolding procedure and, therefore, the time to solve arithmetic 

calculations, is proportional to the size of the min operand? If so, we can use the min operand as 

an index of problem-size/difficulty and probe if, how and when it modulates the activity in 

calculation-selective neuronal populations in the LPC and VTC, thus clarifying their precise roles 

in mental arithmetic.  
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3.2  Abstract 

Elementary arithmetic requires a complex interplay between several brain regions. The 

classical view, arising from functional magnetic resonance imaging (fMRI), is that the intraparietal 

sulculs (IPS) and the superior parietal lobe (SPL) are the main hubs for arithmetic calculations. 

However, recent studies using electrocorticography (ECoG) have discovered a specific site, within 

the posterior inferior temporal cortex (pITG), that activates during visual perception of numerals, 

with widespread adjacent responses when numerals are used in calculation. Here, we re-examined 

the contribution of the IPS, SPL and pITG to arithmetic by recording ECoG signals while subjects 

solved addition problems. Behavioral results showed a classical problem-size effect: RTs increased 

with the size of the operands. We then examined how high-frequency broadband (HFB) activity 

is modulated by problem size. As expected from previous fMRI findings, we showed that the total 

high-frequency broadband (HFB) activity in IPS and SPL site increased with problem size. More 

surprisingly, pITG sites showed an initial burst of HFB activity that decreased as the operands 

got larger, yet with a constant integral over the whole trial, thus making these signals invisible to 

slow fMRI. While parietal sites appear to have a more sustained function in arithmetic 

computations, the pITG may have a role of early identification of the problem difficulty, beyond 

merely digit recognition. Our results ask for a re-evaluation of the current models of numerical 

cognition and reveal that the ventral temporal cortex contains regions specifically engaged in 

mathematical processing. 
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3.3  Introduction 

Elementary arithmetic requires a complex interplay between several brain regions. The 

classical Triple-Code model for numerical cognition proposed that the lateral parietal cortex (LPC) 

hosts the main hubs for numerosity representation and manipulation (Dehaene, Piazza, Pinel, & 

Cohen, 2003). More specifically, studies have found that the intraparietal sulcus (IPS) is selectively 

activated by number comparison (Piazza et al., 2004, 2007; Pinel, Dehaene, Rivie, & Lebihan, 

2001) and calculation (Menon et al., 2000; Stanescu-Cosson et al., 2000). Furthermore, reflecting 

the classical behavioral problem-size effect - increase in reaction time (RTs) as a function of the 

magnitude of the operands (Ashcraft, 1992), IPS activity has also been shown to increase as 

problems become bigger/harder (De Smedt et al., 2011; Dehaene et al., 1999; Kanjlia et al., 2016; 

Molko et al., 2003; Visscher et al., 2015). Moreover, the superior parietal lobe (SPL) is also 

activated during calculation (Knops, Thirion, et al., 2009), and recent studies have reported that 

it hosts a topographic map of numerosity (Harvey, Klein, Petridou, & Dumoulin, 2013; Harvey, 

Ferri, & Orban, 2017).  

In addition to the LPC, the Triple-Code model predicted that the ventral temporal cortex 

(VTC) would have a key role in number recognition. Indeed, recent studies using 

electrocorticography (ECoG) have confirmed the existence of a region in the posterior inferior 

temporal gyrus (pITG) that selectively activates during visual identification of Arabic numerals 

(the ‘number form area’, NFA), as compared to other similar morphometric symbols, such as 

letters (Shum et al., 2013). Subsequent ECoG studies have demonstrated that distinct neuronal 

populations adjacent to the NFA, also within the pITG, respond higher (Hermes et al., 2015) or 

exclusively (Daitch et al., 2016) to numerals when they are in the context of a calculation and 

that these pITG sites have high functional connectivity with the IPS (Daitch et al., 2016). These 

results raised the possibility that pITG might be involved in arithmetic processing beyond visual 

recognition of mathematical symbols, which is unexpected from previous fMRI and 

neuropsychological findings, unpredicted by neurocognitive models of arithmetic, and surprising 

given the traditional view of the VTC as the last stage of the ventral "what" visual pathway, 
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associated with object categorization (Grill-Spector & Weiner, 2014). However, these prior studies 

that investigated the role of pITG in arithmetic processing were restricted to either contrasts 

between numerals and similar morphometric symbols or between calculation and other tasks (e.g., 

memory/sentence comprehension), thus never testing if, how and when the activity in pITG is 

modulated by numerical features of calculations. Consequently, the precise role of pITG in 

mathematical cognition remains largely elusive.  

In the present study, we aimed at re-evaluating the roles of IPS, SPL and pITG in mental 

calculation with an unprecedented level of precision, by recording electrophysiological signals 

directly from the human cortex (ECoG). We asked subjects to verify the correctness of visually 

presented additions, in the form of “13+5=17”, in which we systematically varied the size of the 

problems (i.e., magnitude of the operands), while preserving the same structure and number of 

characters, thus separating numerical from low-level visual features of the stimuli. Based on 

previous fMRI findings, we predicted that the overall activity in the IPS and SPL would be 

sustained and increase as a function of problem size. Furthermore, this parametric modulation 

should be correlated with RT. However, we were less certain about the pITG. If it is only involved 

in the visual recognition of numerals, we should expect a brief transient burst of activity with no 

parametric modulation by problem size. But, since multi-digit calculations might require subjects 

to mentally re-evaluate the problem a few times before they reach a final decision, pITG activity 

may be sustained across the trial and increase as a function of problem size, possibly reflecting 

the top-down attentional modulation from LPC. Finally, the pITG could be parametrically 

modulated by problem size, but in a different way and with a different latency as compared to 

IPS and SPL, thus revealing an unpredicted role in calculation.  

 

3.4  Methods 

3.4.1  Subjects 

We recorded electrocorticography data from 10 patients with epilepsy who were implanted 

with intracranial electrodes over the VTC and/or LPC as part of their pre-surgical evaluation at 
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Stanford University Medical Center. Demographic information for each subject is included in 

Table 3.1. Each subject was monitored in the hospital for approximately 6-10 days following 

surgery, during which they participated in our study. Before participating, all subjects provided 

verbal and written consent, which was approved by the Stanford Institutional Review Board. Part 

of the data of the present cohort was already published elsewhere (Daitch et al., 2016; Hermes et 

al., 2015; Shum et al., 2013). The inclusion criterion in this study was the completion of at least 

80 trials (corresponding to two blocks) of the Math condition, to have enough power to investigate 

parametric modulations within condition (see below).  

 

3.4.2  Behavioral tasks  

3.4.2.1  Math & Memory Verification 

 Subjects were asked to verify the correctness of either addition calculations (e.g., 

“13+5=17”, Math condition) or autobiographical memory statements (e.g., “I ate fruit yesterday”, 

Memory condition), visually presented and randomly intermixed within the same block. For the 

proposes of the present study, the “Memory condition” served as a sentence/language 

comprehension control condition for Math. Additions were always composed of a 2-digit operand 

(ranging from 10 to 87), a 1-digit operand (ranging from 1 to 9, excluding 3) in either order and 

a 2-digit proposed result. In half of the trials, the proposed result was correct. The absolute deviant 

for the incorrect proposed results ranged from 1-16 (Table 3.7). Subjects responded in the self-

paced manner, by pressing one of two keypad buttons. The trials were interspersed with fixation 

periods (5s or 10s), during which subjects were simply asked to fixate at a crosshair in the center 

of the screen. A 200 ms ITI separated trials. All subjects but one verified 80 additions and 50 

memory statements (S1 evaluated 120 additions and 100 memory statements), divided in 2 blocks 

of 40 additions and 25 memory statements each. 

3.4.2.2  Symbol Identification 

Subjects were visually presented with a series of symbols falling under one of three 

categories: (1) Arabic numerals (ranging from 1-9), (2) letters in the Latin alphabet (A, C, D, E, 
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H, N, R, S, or T), or (3) letters in foreign alphabets. Each category had 36 trials, which were 

randomly shuffled. For each symbol, subjects had to press a given button if they could read the 

symbol (i.e., numbers or letters in the Latin alphabet) and another button if they could not read 

it (i.e., symbols in foreign alphabets). Subjects had up to 15 s to respond to each stimulus and 

trials were separated by a 500-ms ITI. The tasks were presented on a laptop computer (Apple 

MacBook or MacBook Pro), using MATLAB’s Psychtoolbox (Brainard, 1997).  

 

3.4.3  Electrodes 

Each subject was implanted with grids and/or strips of subdural platinum electrodes 

(AdTech Medical Instruments Corporation), whose locations were determined purely for clinical 

reasons. Each electrode had an exposed diameter of 2.3 mm, with inter-electrode spacing of 10mm, 

7mm, or 5mm for higher density arrays. Electrode localization. Electrode locations were mapped 

on each subject’s own cortical surface with the following steps: 1) A post-surgical CT (with 

electrodes) was aligned to a pre-surgical T1-weighted MRI using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). 2) Electrode coordinates were manually localized within the 

aligned CT as the center of high image intensity spheres. 3) The identified electrode coordinates 

were adjusted for minor cortical shifts following surgery, with a local projection defined separately 

for each grid or strip (Hermes, Miller, Noordmans, Vansteensel, & Ramsey, 2010). 4) Cortical 

surface reconstructions of each subject’s brain were obtained by manually segmenting the white 

matter from the subject’s T1-weighted MRI using ITKGray  

(http://vistalab.stanford.edu/newlm/index.php/ItkGray), and growing out 2 layers of grey 

matter from the white matter surface. Finally, electrodes were labeled by an expedient 

neuroanatomist, based on the subdivision of LPC and VTC showed in Figure 3.1. For group plots, 

each subject’s electrode coordinates, defined in native brain space, were realigned to a normalized 

brain (MNI Colin 27 (http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27), and coordinates 

across subjects were plotted in this common space. Note that the location of each electrode site 

projected in MNI space may look slightly different (relative to gyral landmarks, etc) than in native 



73 
 
 

space, and was done purely for visualization purposes. Anatomical parcellations within the VTC 

and LPC were determined based on each subject’s own gyral landmarks in native brain space. 

 

3.4.4  Data acquisition and analysis 

ECoG data were recorded from subdural electrodes via a multichannel recording system 

(Tucker David Technologies). Data were acquired with a band pass filter of 0.5-300 Hz and 

sampling rate of 1525.88 Hz. An electrode outside the seizure zone with the most silent 

electrocorticographic activity was selected as an online reference during acquisition.  

3.4.4.1  Preprocessing 

First, electrodes with epileptiform activity, or those corrupted by electrical noise, were 

eliminated from subsequent analyses. Electrodes were also excluded whose overall power was five 

or more standard deviations above or below the mean power across channels, and those whose 

power spectrum strayed from the normal 1/f power spectrum, based on visual inspection. All non-

excluded channels were then notch filtered at 60 Hz and harmonics to remove electric interference, 

then re-referenced to the mean of the filtered signals of the non-excluded channels. The re-

referenced signal at each electrode was then band-pass filtered between 70 and 180 Hz (high 

frequency broadband, HFB) using sequential 10 Hz width band-pass windows (70-80 Hz, 80-90 

Hz, etc.), using two-way, zero-lag, FIR filters. The instantaneous amplitude of each band-limited 

signal was computed by taking the modulus of the Hilbert Transformed signal. The amplitude of 

each 10 Hz band signal was normalized by its own mean, then these normalized amplitude time 

series were averaged together, yielding a single amplitude time-course for the HFB band.  

 

3.4.5  Task-related HFB changes 

Our analyses were focused on task-induced changes in HFB activity (70-180 Hz), due to 

its high correlation with local spiking activity and the fMRI BOLD signal (Foster, Rangarajan, 

Shirer, & Parvizi, 2015; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Manning, 

Jacobs, Fried, & Kahana, 2009; Parvizi et al., 2012; Ray & Maunsell, 2011). For the Math & 
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Memory verification task, we first identified electrodes within the VTC and LPC that responded 

selectively during mathematical calculations relative to reading sentences comprehension/memory 

retrieval. We classified all sites into six groups based on their relative responses during math vs. 

memory trials. 1) Math active channels were defined as those with significantly greater HFB 

activity during math trials (0 - 1,000 ms following stimulus onset) than during baseline (200 ms 

inter-trial interval); 2) Math selective channels satisfied 1, and also exhibited significantly 

greater HFB activity during math than memory trials (0 - 1,000 ms following stimulus onset for 

each condition); 3) Math-only channels satisfied 1 and 2, and additionally exhibited no significant 

increase in activity during memory trials (0 - 1,000 ms following stimulus onset). 4-6) Memory-

active, memory-selective, and memory-only channels were classified using equivalent 

criteria as 1-3, but comparing activity during memory trials to that during baseline or math trials. 

For the Symbol identification task, a similar procedure was used to determine channel selectivity, 

but using a time-window of (0 – 400 ms after stimuli onset) and a baseline of (-200 ms before 

stimuli onset). Channels were classified as 1) Numeral active if they showed significantly greater 

HFB activity during numerals identification as compared to baseline; 2) Numeral selective 

channels satisfied 1 and also exhibited significantly greater HFB activity during numerals 

identification as compared to Latin and foreign letters. Unpaired permutation tests were run to 

test for differences in HFB power between different task conditions, while paired permutation 

tests were run to test for a difference in HFB power between a task condition and baseline. All p-

values in all analyses were FDR corrected by the total number of VTC and LPC channels within 

each subject. 

 

3.5  Results 

We recorded brain activity of 10 subjects implanted with intracranial electrodes (ECoG) 

in VTC and LPC for epilepsy monitoring purposes while they performed a mental calculation task, 

in which they had to verify the correctness of addition problems (e.g., 13+5=17). In a control 

language/sentence comprehension condition, they evaluated autobiographical memory statements 
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(e.g., ‘I ate fruit yesterday’) (Figure 3.1C). Accuracy for the Math condition was high (80% or 

higher) in 9/10 subjects (Table 3.1). To model RTs in each subject, we calculated stepwise 

regression models with the smaller operand (min), the larger operand (max), the sum and the 

absolute deviant as predictors. Results revealed that the min operand was a significant and the 

best predictor of RT in 9/10 subjects (betas > 0.32, p < 0.003), while the sum and the absolute 

deviant were significant predictors only in 2 subjects (betas > 0.28, p < 0.01). The max operand 

was not a significant predictor of RT in any model (Table 3.3, supporting Figure 3.1). These 

results corroborates previous findings using different tasks, in which the min operand was also 

found to be the best predictor of RT (Barrouillet & Thevenot, 2013; Groen & Parkman, 1972; 

Pinheiro-Chagas, Dotan, Piazza, & Dehaene, 2017; Uittenhove et al., 2016), thus providing 

incremental evidence that the min operand is a robust and reproducible index of problem-

size/difficulty across a variety of mental calculation experiments.  

 
Table 3.1 Subject demographics and behavioral performance. 

 

 
3.5.1  Selectivity for Math in pITG, aIPS and SPL sites 

Next, we investigated the Math vs. Memory selectivity in several recording sites across all 

subjects. We found that our Math-ROIs - pITG, aIPS, and SPL - were highly selective to 

mathematical processing, as previously reported (Daitch et al., 2016; Hermes et al., 2015) and in 
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line with a recent fMRI study that used an analogous task (Amalric & Dehaene, 2016). 40% of 

sites within the pITG (11/28), 21% of sites around the aIPS (7/33) and 25% of sites within the 

SPL (13/53) responded exclusively during the math condition (Figure 3.1C). Moreover, most of 

the math-selective sites in these regions exhibited sustained activity during the computation. In 

sharp contrast, the Memory condition produced activity in the language network including LPC 

regions such as the angular gyrus and superior temporal sulcus (Pallier, Devauchelle, & Dehaene, 

2010) and in more medial portions of the inferior temporal cortex, close to the visual word form 

area (VWFA, Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015). Non-selective 

sites, showed either transient activity following stimulus onset in both conditions, likely involved 

in the visual processing of the stimulus, or later activity just prior to subjects’ motor response, 

probably engaged in motor planning.  

 

 

Figure 3.1 Anatomical subdivisions, task, recording sites, and behavioral problem-size effect 
A) The anatomical subdivisions within the lateral parietal cortex (LPC) and ventral temporal 
cortex (VTC) considered in this study, as seen in the left hemisphere from a slightly posterior 
viewpoint. LPC: AG, angular gyrus; aIPS, anterior intraparietal sulcus; aSOG, anterior superior 
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occipital gyrus; pIPS posterior intraparietal sulcus; SMG, supramarginal gyrus; SPL, superior 
parietal lobule. VTC: aFG, anterior fusiform gyrus; aITG, anterior inferior temporal gyrus; pFG, 
posterior fusiform gyrus; mFG, mid fusiform gyrus; pITG, posterior inferior temporal gyrus. Math-
ROIs marked in red. B) Exemplar stimuli of the Memory & Math verification task (See Table 
3.7). In each trial, subjects were asked to verify the correctness of visually presented additions or 
a memory statements, by pressing one of two buttons. C) LPC and VTC sites from all 10 subjects 
are projected onto a single left hemisphere using the MNI space (see Electrodes Localization in 
the Methods), with the color of each site indicating its selectivity for math versus memory. Bright 
blue and bright red mark the most selective sites, passing three criteria for significance (e.g. math > 
baseline; math > memory; and memory indistinguishable from baseline). Faded red and blue 
indicate the selective sites that met only the first two criteria. Small faded red and blue indicate 
sites that met only the first criteria. Sites colored in purple were activated similarly during the 
two conditions, and sites marked by small black dots were not significantly active during either 
condition. Significance was defined as P < 0.05, FDR corrected within subject. D) Behavioral 
problem-size effect (min operand) in each subject (different shades of gray): average RT plotted 
as a function of min operand (normalized within each subject by subtracting the mean and 
dividing by the standard deviation). Complete statistics of the stepwise regression can be found 
in Table 3.3.  

 

3.5.2  Parametric modulation of the HFB power by min operand in pITG, 

aIPS and SPL  

 Given the behavioral evidence that the min operand was the best index of problem 

size/difficulty, we next investigated if, how and when the min operand modulated the activity in 

our Math-ROIs. To do so, we performed linear regression analysis on the HFB activity at each 

recording site on two time windows: initial activity (averaged power over 0 - 1,000 s following 

stimulus onset, where greater activity was observed) and total activity (the integral - area under 

the curve - from stimulus onset to subject’s RT).  

As expected from previous fMRI findings, the total activity increased as a function of min 

operand in several aIPS (5/12 sites, 42% in 3/7 subjects with aIPS coverage) and SPL (7/17 sites, 

41% in 3/7 subjects with SPL coverage) sites (p<0.05, FDR corrected; Figure 3.2B and Figure 

3.4a, Table 3.4). Importantly, no site in pITG showed this effect. Surprisingly, however, we found 

that the initial activity significantly decreased as a function of min operand (p<0.05, FDR 

corrected) in several math-selective pITG sites (10/17, 59% in 6/7 subjects with pITG coverage) 
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and in 1 anterior ITG site, just adjacent to the pITG. Examples of activation profiles at the single 

trial level are shown in Figure 3.2a (see also Figure 3.3 and Figure 3.4a, Table 3.4). This proportion 

increased when considering only the math-selective channels that did not show any significant 

response during the memory condition (math-only channels: 8/11, 72%). The same effect was also 

observed in a small proportion of the math-selective channels in the aIPS and SPL (aIPS: 2/12, 

17% in 2/7 subjects with aIPS coverage; SPL: 2/17 sites, 12% in 2/7 subjects with SPL coverage). 

No significant increases were found.  

 

 

Figure 3.2 Exemplar sites whose activity was modulated by the min operand 
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A) Two exemplar channels showing decreased HFB initial activity in the pITG as a function of 
min operand (both math selective, one in each hemisphere in two different subjects). The location 
of each electrode is shown as the inset of the first plot. The first plot in each column shows the 
time course of activity for each trial, sorted by min operand and then by RT. The second plot in 
each column shows the time course of activity averaged across trials with a given min operand 
(zoomed in the first two seconds of the trial). Bar plots underneath in each column show average 
initial activity (within the first second of a trial), and average total activity (integrated over the 
whole trial) as a function of min operand. B) Exemplar math selective channel in the aIPS showing 
increased HFB total activity as a function of min operand. C) Exemplar channel of a non-math 
selective channel in the posterior IPS of the same subject as in B showing no HFB modulation by 
min operand. An asterisk indicates that a regression analysis found a significant effect of min 
operand on either initial or total HFB activity (P < 0.05, FDR corrected). 
 

To evaluate the specificity of these results, we next analyzed functional control sites, where 

activity was memory-selective or equally responsive to math and memory (Table 3.5), as well as 

anatomical control sites (math-selective channels that were outside of our Math-ROIs, Table 3.6). 

None of the memory selective channels, nor channels that equally responded to math and memory, 

across any brain region, showed a significant decrease in the initial HFB activity as a function of 

min operand. Very few non-math-selective channels in the ROIs showed an increase of total HFB 

activity as a function of min operand. Likewise, very few math selective channels located outside 

the ROIs showed either a decrease in the initial HFB activity or an increase in the total HFB 

activity as a function of min operand.  

Finally, we measured the selectivity for symbols of the VTC math-selective sites which showed 

a decreased initial activity as a function of min operand, using the symbol verification task (Table 

3.2), to investigate whether these sites were selective for or modulated by numerical information 

in any context, or only during mathematical calculations. We found that 7/11 sites were active 

for Arabic numerals, but they equally responded to Latin and foreign letters. And the remaining 

4/11 were not even active for any symbol. Only one pITG site showed selectivity for numerals 

(NFA). In fact, that was the only NFA site observed in this study. Next we performed a linear 

regression analysis on the averaged HFB power between 0 – 500 ms, where higher activity was 

observed, with the Arabic numerals (ranging from 1-9) as predictors. In none of the 11 channels 

we found a significant effect of the number magnitude (p>0.1, FDR corrected for only the 11 
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channels, to be more liberal). Therefore, the engagement and selectivity to mathematical 

objects/processing in the VTC was much higher during calculation as compared to digit 

recognition and, crucially, the parametric modulation by number magnitude (min operand) was 

exclusively present during calculation.   

In summary, parametric modulations were almost entirely dissociated into two categories, 

found in both left and right hemispheres (Figure 3.4a): (1) decreases in initial activity with 

increasing min operand, showing a high specificity to math-selective sites mostly in pITG (Figure 

3.3), and (2) increases in total activity with increasing min operand in aIPS and SPL math selective 

sites (Figure 3.5).  

 

Figure 3.3 Anatomical and functional specificity of the HFB activity modulation in the VTC 
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The figure illustrates the relationship, in VTC, between (1) selectivity for math vs. memory (left 
brain, same color code as Figure 3.1b) and (2) the effect of the min operand on initial activity 
(right brain). The figure shows all 6 (out of 7) subjects with pITG coverage who showed the effect. 
All channels whose initial activity decreased with problem size were located within the pITG 
(except for the most posterior channel of subject 2 and were math selective (thick black ring). For 
the min effect, dot color indicates the size and sign of the regression coefficient and dot size 
indicates the size of the regression coefficient (standardized) (P < 0.05, FDR corrected). Small 
dots indicate non-significant channels. Complementary data for LPC channels can be found in 
Figure 3.5.  
 
Table 3.2  Selectivity and modulation related to the recognition of Arabic numerals in the VTC 
channels that showed decreased initial activity as a function of min operand.  

 

 
3.5.3  Dissociation from reaction time 

Finally, to verify if the parametric modulation by min operand directly translated to 

behavior, thus being independent of other factors that influence RT, such as attention, decision 

making and motor preparation, we used multiple linear regression to model HFB activity as a 

function of both min operand and RT (Figure 3.4b and c). When regressing out the effect of RT, 

the initial activity at most pITG sites remained significantly modulated by min operand at 9 of 

the 10 observed sites. Conversely, once we regressed out the effect of RT from the total activity 

in aIPS and aSPL, the effect of min operand completely vanished in all sites (Figure 3.4b). Finally, 

as shown in Figure 3.4c, the total activity in almost all VTC and LPC sites significantly correlated 
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with RT, independently of min operand. Therefore, in contrast with the increase in total activity 

as a function of min operand observed in aIPS and SPL sites which proved to be directly related 

to final decision making, the parametric decrease of the initial activity as a function of min operand 

observed in pITG was partially dissociated from RT, possibly indicating a role in the earlier stages 

of the calculation that do not seem to me linearly additive to the subsequent stages. 

 

 

Figure 3.4 Separating the effects of number and reaction time  
Regression analysis, where activity is modeled as a function of min operand in the initial activity 
(within the first second of a trial, left column) and total activity (integrated over the whole trial, 
right column). A. The effect of the min operand in a simple regression (one predictor). B. The 
effect of the min operand in a multiple regression that included both the min operand and the RT 
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as predictors. C. The effect of the RT in a multiple regression that included both the min operand 
and the RT as predictors. For all plots, dot color indicates the size and sign of the regression 
coefficient and dot size indicates the size of the regression coefficient significant (standardized). A 
thick black ring indicate that the channel is also math selective. Small dots indicate non-significant 
channels. Significance: P < 0.05, FDR corrected. Complementary data can be found in Table 3.4, 
3.5 and 3.6.  
 

3.6  Discussion 

By recording electrophysiological signals directly from the human cortex (ECoG) with 

remarkable temporal and spatial resolution, we characterized the response selectivity and 

parametric modulation patterns in neuronal populations of the lateral parietal and ventral 

temporal cortices during mental arithmetic. Our results demonstrated a high degree of selectivity 

for calculations in a network comprised of the aIPS and SPL in the LPC and the pITG in the 

VTC, almost completely dissociated from the selectivity observed during sentence comprehension 

(Memory condition), observed in the angular gyrus and STS and the medial inferior temporal 

cortex, known to be involved in language comprehension (Pallier et al., 2010) and reading 

(Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015), respectively. These results are 

in line with previous reported ECoG results (Daitch et al., 2016; Hermes et al., 2015), with a 

recent fMRI study that used an analogous task (Amalric & Dehaene, 2016) and with a series of 

prior fMRI findings (Arsalidou & Taylor, 2011).  

 Virtually all subjects performed the addition task with high accuracy, and their RT 

patterns reflected the most widely replicated behavioral effect in cognitive arithmetic: the problem-

size effect (Ashcraft, 1992; Zbrodoff & Logan, 2005). More specifically, we found that the best 

predictor of RT, and therefore problem size/difficulty, was the smallest of the two operands (called 

min), corroborating several studies which used a variety of calculation tasks (Barrouillet & 

Thevenot, 2013; Groen & Parkman, 1972; Pinheiro-Chagas, Dotan, et al., 2017; Uittenhove et al., 

2016). Next, we investigated if, how and when the min operand modulated the activity in the 

LPC and VTC math-selective regions.  

As predicted, we found that the total HFB activity (integral of HFB power across the 
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whole trial from stimuli onset to subject’s RT) increased as a function of the problem-size in aIPS 

and SPL math-selective sites. These results replicate previous fMRI findings (De Smedt et al., 

2011; Dehaene et al., 1999; Kanjlia et al., 2016; Molko et al., 2003; Visscher et al., 2015), but with 

a much greater level of anatomical precision within the single subject level. Most surprisingly, 

however, we found almost the inverse pattern in pITG, that is, the initial HFB activity (averaged 

within the time window of 0-1,000 ms following stimuli onset) decreased with problem-size.  

 Recent ECoG findings revealed the existence of neuronal populations in the pITG that 

selectively respond to Arabic numerals (NFA) as compared to other similar stimuli, such as letters 

(Shum et al., 2013). However, subsequent ECoG studies showed that responses to numerals in the 

VTC are more complex that what it was previously predicted by the Triple-Code model (Dehaene 

& Cohen, 1995), by revealing that, adjacent to the NFA, there are neuronal populations that 

respond to numerals more strongly (Hermes et al., 2015) or even exclusively (Daitch et al., 2016) 

when they are in the context of calculation, possibly reflecting top-down modulation coming from 

the LPC. Furthermore, recent fMRI studies showed that voxels around the pITG are also active 

for number processing in blind subjects who learned to associated number shapes with sounds 

(Abboud, Maidenbaum, Dehaene, & Amedi, 2015) and when professional mathematicians evaluate 

high-level mathematical statements auditory presented (Amalric & Dehaene, 2016). These results 

suggest that pITG might be involved in calculation beyond visual recognition of mathematical 

objects.  

However, the precise role of pITG was not carefully examined, since none of the prior 

studies investigated if, how and then activity in pITG is modulated by numerical features of the 

calculations. Our results, showing a parametrical decrease in the initial activity as a function of 

problem-size independent of RT in several pITG sites (replicated across several subjects), suggest 

that the pITG activation during multi-digit calculation are directly linked to quantity-related 

features of calculations and do not simply reflect top-down attentional modulation or sustained 

working memory subserving regions that execute the actual computation. If that was the case, 

the total activity in pITG, as in the aIPS and sPL, should have increased as a function of min 

operand. Crucially, since fMRI is only sensitive to the activity integrated over a temporal window 
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of several seconds, the initial modulation observed in pITG would be undetectable with fMRI. 

This may explain why previous fMRI studies did not observe modulation in the pITG by 

arithmetic problem size, but exclusively in a parietal-frontal network, including mainly the 

bilateral aIPS and SPL and the left inferior frontal gyrus (Kanjlia et al., 2016; Molko et al., 2003; 

Stanescu-Cosson et al., 2000). Note that in the present study, LPC contained sites whose total 

HFB activity in a trial was positively correlated with min operand, yet which were not selective 

for math processing (e.g., were active during both math and memory trials). Those sites might 

therefore have been engaged in sustained attention, decision making, or some other non-math-

selective process.  

The behavioral paradigm used here, which involves judging the correctness of an equation, 

requires at least two decision processes: first, computing the sum of the two operands, and second 

comparing the sum with the proposed result. Although our study cannot explicitly separate the 

neural processes corresponding to those two stages, it seems likely that the min-related activity 

observed mainly in pITG sites and in a few aIPS and SPL sites is primarily related to the 

computation stage since, 1) the most salient effects are observed during the beginning of a trial, 

and 2) the min effect remains at most sites even after regressing out the effect of RT, while we 

would expect decision-related processes to be more correlated with RT. 

Why would pITG activity related to calculation decrease for more difficult problems? 

Simple arithmetic problems appear to induce a temporal concentration of activity into a fast and 

strong initial peak. Conversely, for more complex problems, the same total amount of activity 

appeared to be diluted in time. These findings suggest that pITG may index the difficulty or 

amount of evidence available for a calculation problem. In this respect, our findings, in a high-

level semantic task, parallel the observations made during perceptual decision-making tasks, for 

instance the fact that activity in area MT indexes the amount of perceptual evidence for a motion-

based decision and therefore varies inversely with task difficulty (Britten, Shadlen, Newsome, & 

Movshon, 1993). A possible alternative interpretation could be that the higher initial activity 

observed in the pITG for smaller min operands reflects tuning to more familiar symbols, since it 

is known that the frequency of number words and digits decrease as a function of numerosity 
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(Dehaene & Mehler, 1992). However, an important argument against this interpretation is the 

fact that the pITG sites that showed a decreased initial activity as a function of min operand falls 

adjacent to, but not directly in the ‘number form area’ and do not show selective responses to 

isolated numerals as compared to other similar visual objects. Crucially, even the pITG sites that 

were active during Arabic digit recognition, did not show any modulation by the magnitude of 

the numbers, that is, they equally responded to digits ranging from 1-9. Furthermore, as all 

elements of the addition were presented simultaneously in the screen, is very unlikely that the 

pITG would be tuned to the frequency of only one of the elements. Another possibility is that 

pITG stores visual representations the whole addition problem, as suggested by an early fMRI 

study (Rickard et al., 2000). In this case, the pITG modulation could potentially reflect the 

frequency of individual problem. Further studies, using a larger stimuli list and more adapted 

experimental design should be try to arbitrate between these hypotheses.  

Several sites in the aIPS and SPL showed an increasing effect of min operand on total power, 

which was in fact driven by RT. This suggests that the aIPS and SPL may be involved in the 

slow accumulation of evidence needed to achieve a decision (Gonzalez et al., 2015; Tosoni, Galati, 

Romani, & Corbetta, 2008) during mental arithmetic. To better dissociate distinct processes 

within numerical cognition, future work could use simpler tasks such as number comparison or 

single-digit arithmetic, which would be more conducive to testing accumulation-of-evidence models 

(Dehaene, 2007; Gold & Shadlen, 2007).  

 In sum, our results confirmed the selective engagement of aIPS and SPL in mental 

calculation and reveal an unexpected pattern of parametric modulation in pITG, that is, higher 

initial activity for simple as compared to more complex problems, possibly reflecting a role in the 

early identification of the difficulty/amount of evidence associated with a given computation. In 

the absence of reported bilateral focal lesions in the pITG region, its role in calculations remained 

unsuspected by previous neuropsychological studies (Cappelletti, 2015, for a recent review) and 

asks for a re-evaluation of the neurocognitive models of arithmetic and acquired and developmental 

dyscalculia. Updated models should incorporate the pITG as an important hub for mental 

calculation and any future study on numerical cognition should include it as a ROI. More broadly, 
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our results challenge the classical view of ventral temporal cortex as the last stage of the visual 

object categorization network, and shows that it contains regions crucially involved in 

mathematical processing.  

 

  



88 
 
 

3.7  Acknowledgments 

We thank all the patients for volunteering their time to participate in this study; members 

of the Laboratory of Behavioral and Cognitive Neuroscience at Stanford University for their help 

in the initial and early stages of this study. This work was supported by research Grant 

R01NS078396 from the National Institute of Neurological Disorders, Stroke; Grant 

1R01MH109954-01 from the National Institute of Mental Health (NIMH), Grant BCS1358907 

from the National Science Foundation (NSF) (all to J.P.) and by the INSERM, CEA, and the 

Bettencourt-Schueller Foundation (France). Postdoctoral Fellowship 1F32HD087028-01 from the 

National Institute of Child Health and Human Development (to A.L.D.); Science Without Borders 

Fellowship from CNPq – Brazil (nr. 246750/2012-0). The views presented in this work do not 

necessarily reflect those of the National Institutes of Health. The authors declare no conflicts of 

interest. 

 

  



89 
 
 

3.8  Supplementary Materials 

 

Table 3.3 Arithmetic problem-size effect by subject 
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Figure 3.5 Anatomical and functional specificity of the HFB activity modulation in the LPC 
The figure illustrates the relationship, in LPC, between (1) selectivity for math vs. memory (left 
brain, same color code as Figure 1B) and (2) the effect of the min operand on total activity (right 
brain). The figure shows all 3 (out of 7) subjects with LPC coverage who showed the effect. Most 
channels whose total activity increased with problem size were located within the aIPS and SPL 
and were math selective, but some channels that showed this effect felt outside aIPS and SPL 
and/or were not math selective. For the min effect, dot color indicates the size and sign of the 
regression coefficient and dot size indicates the size of the regression coefficient. A thick black ring 
indicate that the channel is also math selective. Small dots indicate non-significant channels. P-
values were FDR-corrected within subject.  
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Table 3.4 Number of electrodes showing math selectivity and modulation by the min operand, by 
subject/anatomical region.  
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Table 3.5 Number of electrodes showing memory selectivity and modulation by the min operand, 
by subject/anatomical region. 
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Table 3.6 Number of electrodes showing modulation by the min operand by subject in other 
anatomical regions 
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Table 3.7 Stimuli list for the Math task 
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  DECODING THE PROCESSING STAGES OF MENTAL 

ARITHMETIC WITH MAGNETOENCEPHALOGRAPHY 

4.1  Motivation 

The results presented in Chapter 2 and 3 offer several new insights on the neurocognitive 

mechanisms of mental calculations. However, they did not provide any indication of the nature of 

the underlying neural codes of the operands, neither a comprehensive picture of the series of 

unfolding computations in the brain. In Chapter 4, I apply time-resolved multivariate pattern 

analysis to magnetoencephalography (MEG) signals with the goal of characterizing the series of 

processing stages and mental transformations involved in an arithmetic verification task.  

Specifically, I aimed at answering the following questions. Can we decode the identity of 

operands? If so, can we distinguish neural codes for digit symbols and for the corresponding 

quantities? Can we track in time the emergence of the internally computed result? Can we dissect 

the comparison and decision processes by which subjects classify the proposed result as correct or 

incorrect? Are these processes completely serial or do they partially overlap in a form of a cascade 

of computations that can be simultaneously decoded? 
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4.2  Abstract 

Elementary arithmetic is one of the most prevalent cultural inventions in our daily lives. 

However, despite decades of research, we still lack a comprehensive understanding of how the 

brain computes simple additions and subtractions. We applied machine learning techniques to 

magnetoencephalography (MEG) signals in order to characterize the processing stages and mental 

transformations underlying elementary arithmetic. Adults subjects verified single-digit addition 

and subtraction problems such as 3+2=9 in which each successive symbol was presented 

sequentially. MEG signals revealed a cascade of partially overlapping brain states. While the first 

operand could be transiently decoded above chance level, primarily based on its visual properties, 

the decoding of the second operand was more accurate and lasted longer. Representational 

similarity analyses suggested that this decoding rested on both visual and magnitude codes. We 

were also able to decode the operation type (additions vs. subtraction) during practically the 

entire trial after the presentation of the operation sign. At the decision stage, MEG indicated a 

fast and highly overlapping dynamics for (1) identifying the proposed result, (2) judging whether 

it was correct or incorrect, and (3) pressing the response button. Surprisingly, however, the 

internally computed result could not be decoded. Our results provide a first comprehensive picture 

of the unfolding processing stages underlying arithmetic calculations at a single-trial level, and 

suggest that externally and internally generated neural codes may have different neural substrates. 
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4.3  Introduction 

Cultural inventions such as mathematics are unique to humans and can radically enhance 

our native cognitive competence. Therefore, understanding how mathematics is implemented in 

the brain is fundamental to our comprehension of the mechanisms of high-level symbolic cognition. 

Arithmetic is the most elementary branch of mathematics and yet, despite decades of research, 

how the brain solves simple calculations is still largely unknown.  

Traditionally, research in cognitive arithmetic has relied on behavioral methods and used 

mental chronometry to infer the covert processing stages of mental calculations. Behavioral 

research discovered that response time (RT) during calculation increases with the size of the 

operands, a finding which has been called the “problem-size” effect and which led to the proposal 

of several models of mental arithmetic (Ashcraft & Battaglia, 1978; Butterworth, Zorzi, Girelli, & 

Jonckheere, 2001; Campbell, 1994; Groen & Parkman, 1972; Uittenhove, Thevenot, & Barrouillet, 

2016; Zbrodoff & Logan, 2005).  

However, since Because RT is only a summary measure of the entire processing chain, it 

can only provide indirect information on the nature and relative timing of the various stages. 

Recently, more direct behavioral methods, such as continuous measures of finger pointing, have 

helped characterized the covert processing stages of arithmetic processing (Dotan & Dehaene, 

2013, 2015; Pinheiro-Chagas, Dotan, et al., 2017). Pinheiro-Chagas et al. (2017) monitored the 

finger trajectory of adult subjects, while they were asked to point to the result of single-digit 

calculations on a number line. Results revealed that additions and subtractions are computed by 

a stepwise displacement on the mental number line, starting with the larger operand (max), 

irrespectively of its position in the problem, and incrementally adding or subtracting the smaller 

operand (min). They also found a transient effect of the operator sign (a plus sign attracted the 

finger to the right [larger results] and a minus sign to the left [smaller results]) around the time 

that subjects were processing the second operand. However, while such behavioral methods can 

be considerably informative about the duration and serial organization of cognitive computations, 

they remain limited in capturing processes that may happen simultaneously.  
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To supplement behavioral research, several studies have tried to decipher the neural code 

for numbers. Initial electrophysiology findings revealed the existence of single neurons tuned to 

specific numerosities in the monkey ventral intraparietal (VIP) and lateral prefrontal cortices 

(lPFC) (Nieder, 2016). These results were corroborated by human fMRI studies that demonstrated 

tuning curves for numbers in the intraparietal sulcus (IPS) (Piazza et al., 2004, 2007) and a 

topographical organization of numerosites in the lateral parietal cortex (Harvey et al., 2013). 

Machine learning was also used to successfully decode the identity of numbers from fMRI activity 

in parietal cortex (Eger, Pinel, Dehaene, & Kleinschmidt, 2015; Eger et al., 2009) However, these 

studies only investigated simple magnitude perception and comparison tasks. At present, due to 

the difficulty of training monkeys in arithmetic tasks, electrophysiological studies have not yet 

obtained direct information about the neural transformations underlying mental calculation, and 

fMRI measurements in humans are probably too slow to characterize them.  

Only a few studies have tried to decompose the brain states during arithmetic processing, 

using a combination of mental chronometry and time-resolved brain imaging. Dehaene (1996) 

combined event relate potentials (ERPs) and the additive-factors method (Sternberg, 1969) to 

parse the processing stages involved in a number comparison (between two visually presented 

stimuli). By manipulating orthogonal features of the stimuli and the task, the author showed that 

the ERPs were first modulated by notation (Arabic numerals vs. number words, at ~110 - 170 

ms), followed by the numerical distance (close vs. far, at ~190-300 ms) and finally by the 

lateralization of motor response (left vs. right, at ~250 – 400 ms). More recently, using a modified 

version of the arithmetic verification with ERPs, Avancini, Soltész, & Szucs (2015) identified a 

series of overlapping cognitive processes during calculation, such as the identification of the stimuli 

properties, magnitude comparison and judgment of correctness.  

 Progress in understanding the spatial-temporal dynamics of mental calculations have 

recently increased with a series of novel electrocorticography (ECoG) findings. Using a sequentially 

presented addition task, a recent study revealed a series of successive brain activations: starting 

around ~90 ms, the number form area (NFA, lateral ventral temporal cortex) responds to digits, 

irrespective of whether or not they are presented in a calculation context (Shum et al., 2013); 
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slightly later at ~100 ms, adjacent sites in the posterior inferior temporal gyrus (pITG) respond 

to numbers only when they are manipulated in the context of a calculation. Furthermore, activity 

at those ventral calculation-selective populations showed high correlations with activity in the 

vicinity of the intraparietal sulcus (IPS), which is traditionally considered the main number 

processing hub in the brain (Dehaene et al., 2003). Pinheiro-Chagas, Daitch, Parvizi, and Dehaene, 

(2017) further determined that both of these regions were affected by problem-size, though in 

different ways: pITG shows a fast peak which was inversely proportional to problem size, while 

IPS shows a more progressive activity whose integral is proportional to problem size. Thus, both 

of these regions seem to be involved in magnitude processing, but these findings do not resolve 

the nature of the underlying neural codes for the operands, nor do they provide a comprehensive 

picture of the series of unfolding computations.  

In the present study, we aimed to evaluate whether magnetoencephalography (MEG) could 

resolve this issue. We combined MEG recordings with time-resolved multivariate pattern analysis 

(MVPA), specifically decoding (King & Dehaene, 2014) and representational similarity analysis 

(Kriegeskorte & Kievit, 2013), in order to characterize the series of processing stages and mental 

transformations underlying elementary arithmetic. Time-resolved decoding has been shown to be 

a powerful tool to investigate the temporal dynamics of cognitive tasks, because it can determine 

the precise time at which a given mental content becomes decodable from brain activity (King & 

Dehaene, 2014). Furthermore, MVPA can then shed light on the nature of underlying codes 

(Diedrichsen & Kriegeskorte, 2017), exceeding the capacity of traditional ERP univariate-level 

analysis to capture fine-grained representations (Pantazis et al., 2017). Decoding and MVPA have 

been successfully applied to characterize several cognitive functions such as working memory (King 

et al., 2016; Trübutschek et al., 2017; Wolff, Jochim, Akyürek, & Stokes, 2017) and object 

recognition and categorization (Carlson et al., 2011, 2013; Cichy et al., 2014; Isik et al., 2014). 

MVPA has been shown to exceed the capacity of traditional ERP univariate-level analysis to 

reveal fine-grained representations (Pantazis et al., 2017).  

In the present task, subjects were asked to verify single-digit addition and subtraction 

problems, such as 3+2=5. Each of the symbols was presented sequentially for 400 ms, separated 
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by 385 ms, so that we could analyze brain activity at each step. Specifically, we aimed at answering 

the following questions. First, can we decode the identity of operands? If so, can we distinguish 

neural codes for digit symbols and for the corresponding quantities? What is their temporal 

dynamics? Is this information sustained or transient? When and for how long can we decode the 

operation type? Can we then track the emergence of the internally computed result? Can we 

dissect the comparison and decision processes by which subjects classify the proposed result as 

correct or incorrect? Are these processes completely serial or do they partially overlap in a form 

of a cascade of computations that can be simultaneously decoded? Finally, are the neural codes 

independent of each other, or do they overlap? We were particularly interested in the possibility 

that the neural codes for addition versus subtraction (active just after the presentation of the 

operation sign) would overlap with those for large versus small numbers, as such an overlap would 

readily explain the psychological observation that additions induce a bias towards larger numbers 

and subtraction towards smaller numbers (Knops, Viarouge, Dehaene, et al., 2009; Knops, Thirion, 

et al., 2009; McCrink et al., 2007; Pinhas & Fischer, 2008; Pinheiro-Chagas, Dotan, et al., 2017). 

 

4.4  Methods 

4.4.1  Protocol and experimental design  

Twenty healthy adults were scanned with MEG (23 ± 2 years old, 10 females, all right handed).  

Subjects had normal vision. The experiment lasted ~45 minutes, for which subjects were 

financially compensated. The study was approved by the local Ethics Committee and all subjects 

provided written informed consent before participation.  

Subjects were asked to verify the accuracy of sequentially presented single-digit additions 

and subtractions problems in the form of A ± B = C (see Figure 4.1A). Each stimulus appeared 

for 400 ms, with an inter-stimuli interval of 385 ms. Subjects were instructed to generate an 

internal estimate of the result in advance of its appearance, and to further incite them, on half of 

the trials the appearance of C was delayed for an additional 385 ms. Inter-trial interval was 2,000 

ms. Stimuli were white with a 1.5° visual angle, presented on a black background and projected 
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on a screen with a refreshing rate of 60 Hz, placed 100 cm away from subject’s head. The 

experiment was programmed in Python, mostly using the PsychoPy package (Peirce, 2007).  

  Subjects were asked to respond as fast and as accurate as possible if C was correct or 

incorrect, by pressing a button with their left of right thumb. In half of the blocks, left/right were 

associated with correct/incorrect and then switched. The association order was randomized across 

subjects. Stimuli were composed of the 16 addition and 16 subtraction problems consisting of all 

combinations of the operands:  A = [3, 4, 5, 6] and B = [0, 1, 2, 3]. The correct results C ranged 

from 0 to 9, in the following proportions: 0 : 3.12 %, 1 : 6.25 %, 2 : 9.38 %, 3 : 15.62 %, 4 : 15.62 %, 

5 : 15.62 %, 6 : 15.62 %, 7 : 9.38 %, 8 : 6.25 %, 9 : 3.12 %. On half the trials, C was correct. On 

the other half, C was ± [1, 2, 3, 4] distant from the correct result. A list of incorrect C’s was 

generated for each subject with the single goal of maximizing the homogeneity of their distribution 

across trials.  

Each experimental block took ~4.5 min and consisted of 32 calculation trials and 8 non-

calculation trials, of the form “A = = = C”, which are not analyzed in the current publication. 

Subjects completed 10 experimental blocks, comprising a total of 320 calculation trials.  

 

4.4.2  Preprocessing 

 MEG signals were recorded with an ElektaNeuromag® MEG system (Helsinki, Finland), 

comprising 306 sensors (102 triples of 2 orthogonal planar gradiometers and 1 magnetometer) in 

a helmet-shaped array. Subjects’ head position relative to the MEG sensors was estimated with 

four head position coils (HPI) placed on the frontal and pre-auricular areas, digitized with a 3-

dimensional Fastrak system (Polhemus, USA), and triangulated before each block of trials. Three 

pair of electrodes recorded electrocardiograms (EMG) as well as the horizontal and vertical electro-

oculograms (EOG). All signals were sampled at 1 kHz. MEG signals were hardware band-pass 

filtered between 0.1 Hz and 330 Hz, and active compensated for external noise with Maxshield 

(ElektaNeuromag). After visual inspection of bad channels, raw MEG signals were cleaned with 

the signal space separation method (Taulu & Simola, 2006) provided by MaxFilter 

(ElektaNeuromag) to 1. suppress magnetic interferences and 2. interpolate bad sensors. All further 
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preprocessing steps were done with the Matlab Fieldtrip Toolbox (Oostenveld, Fries, Maris, & 

Schoffelen, 2011).  

The MEG raw signals were epoched between -500 ms and +4,500 ms with respect to the 

onset of the first operand (A, see Figure 1A) and downsampled to 250 Hz. Trials contaminated 

by muscular or other artifact, were identified and rejected in a semi-automated procedure that 

used the variance across the MEG sensors. Next, we applied independent component analysis 

(ICA) to identify and remove artifacts caused by eye blinks and heartbeats. We then visually 

inspected the topographies of the first 30 components and subtracted the contaminated 

components from the data.  

Further preprocessing was dependent on the nature of the analysis. For decoding and 

representational similarity analysis (RSA), epochs were low-pass filtered at 30 Hz and 

downsampled to 125 Hz. For time-frequency analysis, the spectral power of the non-low-pass-

filtered epochs were estimated with parameters adapted to low and high frequency ranges. For 

the low-frequency range (2 – 34 Hz, steps: 1 Hz), data segments extracted from a sliding time 

window (length: 500 ms, steps: 40 ms) between 2 and 10 Hz and with a length of 5 oscillation 

cycles per frequency between 10 and 34 Hz was tapered with a single Hanning window. For the 

high-frequency range (34 – 100 Hz, steps: 2 Hz), data segments extracted from a sliding time 

window (length: 200 ms, steps: 40 ms) were multitapered and the frequency smoothing was set to 

20% of each frequency value. Finally, epochs were cropped in three time windows: time-locked to 

A (-200 ms to 3,200 ms), time-locked to C (-200 ms to +800 ms) and time-locked to the response 

(-800 ms to +200 ms). 

 

4.4.3  Decoding 

The multivariate estimators aimed at predicting a vector of labels (y) from a matrix of 

features composed by single-trial MEG amplitude signals (X, shape = ntrials x (nsensors x 1time sample). 

Decoding analyses systematically consisted of the following steps: (1) fitting a linear estimator to 

a training subset of X (Xtrain); (2) predicting an estimate of y on a separate test set (ŷtest); (3) 

assessing the decoding score of these predictions as compared to the true value of y. This procedure 
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was repeated for each time sample separately. First, we used a standard transformation to z-scores 

in each channel at each time point across trials, in order to concomitantly include all 306 MEG 

sensors, pooling over magnetometers and gradiometers. Next, we fitted the data with a linear 

model to find the hyperplane that maximally predicts y from X while minimizing the loss function. 

Two main estimators were used: linear support vector machine (SVM) and Ridge Regression, both 

with a class-weight parameter to compensate for any potential class imbalance in the dataset. For 

multiclass problems using SVM, a ‘one-versus-one’ decision function was used. All decoding 

analyses were performed within subject and across trials, with an 8-fold stratified folding cross-

validation scheme to maximize the homogeneity of distribution across training and testing sets. 

Decoding scores (y,ŷ) were quantified using the average classification accuracy for SVM and the 

Kendall’s tau for ridge regression. Statistical analyses were based on second-level tests across 

subjects. More specifically, we tested whether the classification scores were higher than chance 

value or 0, for classification accuracy and Kendall’s tau, respectively, using one-sample t-test with 

random-effect Monte-Carlo cluster statistics for multiple comparison correction (Maris and 

Oostenveld, 2007), using the default parameters of the MNE spatio_temporal_cluster_1samp_test 

function. 

 

4.4.3.1  Temporal generalization 

We also tested if each estimator fitted across trials at time t could accurately predict the 

ŷ value at time t’, therefore probing whether the coding pattern is similar between t and t’. We 

applied this systematically across all pairs of time samples, resulting in a temporal generalization 

matrix (King & Dehaene, 2014). 

 

4.4.3.2  Riemannian geometry 

We also applied an estimator based on Riemannian geometry, using a covariance matrix 

estimation that integrates the temporal information. More specifically, the model relies on the 

tangent space mapping of the covariance matrix described in (Barachant, Bonnet, Congedo, & 

Jutten, 2013). We started by decomposing the low-pass filtered data with a Principal Component 
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Analysis (PCA) and taking the first 70 components for dimensionality reduction. Next, we used 

the ERPCov model (Barachant & Congedo, 2014), which is useful to capture both evoked and 

task induced responses, since it embeds the temporal information of the signal by concatenating, 

along the sensor axis, the averaged ERF (across trial) of each class before estimating the spatial 

covariance matrix. Finally, we mapped the covariance matrix to the tangent space and fitted a 

SVM or logistic regression with our standard cross-validation scheme. The use of Riemannian 

geometry has been shown to increase performances in sensorimotor rhythm (SMR)-based brain-

computer interface (BCI) and more recently in MEG decoding of cognitive features (Biomag 2016 

Decoding Competition). All decoding analysis were performed using the Python Scikit-Learn 

(Pedregosa et al., 2011) and MNE (Gramfort et al., 2013) packages, with some open source tools 

developed by Jean-Rémi King and Alexandre Barachant (https://github.com/kingjr/jr-tools, 

https://github.com/Team-BK/Biomag2016).  

 

4.4.4  Representational Similarity Analysis (RSA) 

Several RSA models were constructed to test specific relationships between different 

dimensions of the stimuli and the MEG signals (Cichy et al., 2014; Diedrichsen & Kriegeskorte, 

2017; Kriegeskorte & Kievit, 2013). RSA analyses systematically consisted of (1) averaging 

conditions across trials; (2) pair-wise correlating the conditions across the MEG sensors at each 

time point; (3) creating a symmetric dissimilarity matrix, equal to 1 - Spearman's rank correlation 

coefficient; (4) correlating the observed matrix with the theoretical similarity matrices predicted 

by different types of neural codes for the stimuli (see below). This procedure was repeated for 

each time sample separately. From the z-scored date, 32x32 representational dissimilarity matrices 

(RDM) were constructed using the 32 additions and subtraction problems, sorted by first operand, 

then by operation (additions first) and finally by second operand (3+0, 3+1, 3+2, 3+3, 3-0, 3-1, 

3-2, 3-3, etc.). Seven theoretical RDM were constructed with the same structure and based on the 

magnitude dissimilarity (numerical distance) or visual dissimilarity (see method below) of operand 

1, operand 2 and correct result and based on category for addition vs. subtractions (see Figure 

4.4). Visual dissimilarity matrices were calculated using the Gabor Filterbank method, as 
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implemented in the Matlab Image Similarity Toolbox. (https://github.com/daseibert/image_similarity_toolbox). 

This method projects the image onto a Gabor wavelet pyramid as a model for primary 

visual cortex, simplified from (Kay, Naselaris, Prenger, & Gallant, 2008). The filters span eight 

orientations (multiples of .125π), four sizes (with the central edge covering 100%, 33%, 11%, and 

3.7% of the image), and X, Y positions across the image (such that filters tile the space for each 

filter size). The resulting vector of filter responses are then compared between images, using the 

Euclidean distance. The method replicates the dissimilarity matrix of neural responses of the 

inferior temporal cortex (IT) in both humans and monkeys (Kriegeskorte et al., 2008) (Readme 

File of the toolbox).  

We then used Spearman's rank correlation test to evaluate the relationship between the 

observed and theoretical matrices. All RSA analyses were first computed within each subject, then 

statistical analyses were based on second-level tests across subjects, using the same method as in 

the decoding analysis, to test if the correlation coefficient was higher than 0.   

 

4.5  Results 

Twenty healthy adults were asked to verify the accuracy of successively presented single-

digit additions and subtractions problems with matched operands in the form of A ± B = C, 

where in half of the trials C was incorrect (see Figure 4.1A and Methods). Accuracy was very high 

(average = 98.8%). Reaction time was faster for correct as compared to incorrect proposed 

results (meancorrect = 519 ms, SDcorrect = 117 ms, meanincorrect = 622 ms, SDincorrect = 134 ms, 

F(1, 19) = 68.796, p = 0.013; η2 = 0.149). Within the trials with an incorrect result, no 

distance effect was found across the four absolute distances between the proposed and the 

correct results (mean1 = 630 ms, SD1 = 145 ms, mean2 = 616 ms, SD2 = 130 ms, mean3 

= 628 ms, SD3 = 136 ms, mean4 = 615 ms, SD4 = 141 ms, F(3, 57) = 0.781, p = 0.508; 

η2 = 0.002). And no significant difference was observed when combining the trials in which 

parity was violated (distance 1 or 3) and those in which it was preserved (distance 2 or 

4) (t(19) = 0.437, p = 0.662, Cohen’s d = 0.097). Finally, we also did not observe a 
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problem-size effect, considering both operand 1 (max) (b = 4.919 ms; p = 0.69) and 

operand 2 (min) (b = -3.249 ms; p = 0.797). This is expected, since calculation was 

probably performed between the onset of operand 2 and the equal sign, therefore subjects 

most likely already had the correct result in mind when the proposed result was presented. 

 

 

 
Figure 4.1 Sustained activity and signal propagation from posterior to anterior sensors 
(A) Experimental design. Subjects were asked to verify the accuracy of sequentially presented 
single-digit additions and subtractions problems in the form of A ± B = C, with an 785 ms 
asynchrony. On half the trials, the presentation of C was delayed by an additional 385 ms. (B) 
Global Field Power (GFP), estimated using the MEG gradiometers and baseline corrected. After 
the onset of each stimulus event, GFP sharply peaked and remained above baseline for the entire 
trial. (C) Averaged MEG gradiometers topographies calculated between 0 – 200 ms and 400 – 600 
ms after each stimulus. The signal propagates from posterior to anterior sensors after the onset of 
each stimulus and overall across the entire trial.  
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4.5.1  Sustained activity across the entire trial 

 In order to investigate weather overall activity was transient or sustained across the entire 

trial, we calculated the Global Field Power (GFP) (Lehmann & Skrandies, 1980), for the MEG 

gradiometers sensors and then normalized with the reference of a baseline period of -200 ms from 

the onset of operand 1.. As can be seen from Figure 4.1B, GFP increases right after (~100 ms) 

the presentation of each event and then slowly decreased until the presentation of the next event, 

but without returning to baseline, thus confirming that the overall activity was sustained across 

the entire trial. The evoked brain activity evolved across time from more anterior sensors in the 

first 200 ms after the stimuli onset to more posterior sensors in the following period of 400 – 600 

ms. Qualitative exploration showed that the second operand produced a higher and wider 

occipital-parietal-frontal activation as compared to the first operand, in both early and later time 

windows (Figure 4.1C). Therefore, this sustained activity allows us to investigate in more detail 

the mental transformations occurring during the entire trial.  

 

4.5.1  Decoding the processing stages of mental arithmetic 

We next investigated whether we could decode the series of processing stages underlying 

mental calculation, from the perception and representation of the operands to the operation type 

and response selection. For this purpose, we cropped the epochs in three different time windows: 

time-locked to operand 1 (-200 ms to 3,200 ms), time-locked to C (-200 ms to +800 ms) and time-

locked to the RT (-800 ms to +200 ms). For each time window, we used seven different classifiers 

(SVM, see Methods) to decode operand 1 [values: 3, 4, 5, 6], operation [additions, subtractions], 

operand 2 [0, 1, 2, 3], correct result [3, 4, 5, 6; chance = 0.25], proposed result [3, 4, 5, 6], 

correctness of the operation as judged by the subject [correct or incorrect, including only the 

accurate responses], and response side [left vs. right button press, including only the accurate 

responses]. Note that for the correct and proposed result we only included the trials in which their 

values were [3, 4, 5, 6], since those were homogeneously distributed (15.62 % of trials each, see 

Methods). 



108 
 
 

4.5.1.1  Operand 1 

The classification accuracy for operand 1 became significantly above chance starting at 

112 ms after its onset, with a peak at 152 ms, and lasted until 640 ms (p < 0.05, corrected for 

multiple comparisons). 

 

Figure 4.2 Decoding the time course of the processing stages underlying calculation 
A series of SVM estimators were applied to classify the different features at each time sample, 
using the signal amplitude of all MEG sensors. Trials were time-locked to three windows of interest: 
after the onset of the operand 1 (A), proposed result (C) and RT. Gray horizontal lines indicate 
theoretical chance level. Operand 1, operand 2, result and proposed result involved 4 classes each 
(theoretical chance level = 25 %) and operation, correctness and response side involved binary 
classifiers (theoretical chance level = 50 %.). Thick lines and filled areas represent time periods in 
which the second-level statistical tests across subjects revealed a classification accuracy 
significantly above chance (cluster corrected for multiple comparisons, p < 0.05).  
 
 

4.5.1.2  Operation type 

The decoding scores for the operation became significantly higher than chance at 880 ms 

(i.e. 95 ms after the onset of the operation sign at 785 ms) with the peak at 928 ms, then dropping 
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after the offset of sign, but remaining above chance almost all the way though the onset of the 

equal sign, and then transiently recovering above-chance performance level after the onset of the 

equal sign (p < 0.05, corrected).  

 
4.5.1.3  Cross generalization from operation type to operand 2 

The high initial classification score of the operation is most likely due to the visual 

difference between the plus and minus signs, but could also reflect task-specific preparation, such 

as operator priming (Fayol & Thevenot, 2012) as well as visual-spatial mechanisms or spatial-

numerical associations (Hartmann, Mast, & Fischer, 2015; Masson & Pesenti, 2014; Mathieu, 

Epinat-duclos, Léone, Fayol, & Thevenot, 2017; Mathieu et al., 2016). Indeed, behavioral studies 

have shown that addition leads to a bias towards large numbers, and subtraction a bias towards 

small numbers (Knops, Viarouge, Dehaene, et al., 2009; Knops, Thirion, et al., 2009; McCrink et 

al., 2007; Pinhas & Fischer, 2008), which could suggest that the neural codes for add/subtract 

and for larger/smaller numbers overlap. To test this hypothesis, we trained a logistic regression 

estimator to decode subtractions vs. additions and tested if it could cross-generalize to small vs. 

larger numbers for both operand 1 (in which 3 & 4 received the same label as subtraction and 5 

& 6 as addition) and operand 2 (in which 0 & 1 received the small label as subtraction and 2 & 3 

as addition). As can be seen in Figure 4.3, cross-generalization from operation was only significant 

at the time of operand 2, but not for operand 1 (even when using a more robust Riemannian 

geometry based model which integrates the temporal information). Those results therefore suggest 

the existence of a transient (~128 – 288 ms) common code between subtractions and additions 

and smaller and larger operands 2, respectively.  

 

4.5.1.4  Operand 2 

The decoding scores for operand 2 started to be significantly above chance at 1,672 ms (i.e. 

102 ms after its onset at 1,570 ms) with a peak at 1,776 ms, then dropping after the its offset, but 

remaining above chance until 2,770 ms (p < 0.05, corrected). Therefore, between the onset of 
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operand2 and the offset of the equal sign, both the operation (addition vs. subtractions) and the 

operand 2 could be decoded simultaneously from the same MEG data. 

 

 

Figure 4.3 Cross-decoding from operation to operands 
A logistic regression estimator was used to decode subtractions vs. additions and then tested if it 
could generalize to respectively smaller vs. larger numbers for both operand 1 (in which 3 & 4 
received the same label as subtraction and 5 & 6 as addition) and operand 2 (in which 0 & 1 – 
subtraction and 2 & 3 addition). The time window used was between 0 – 700 ms, locked to each 
stimulus. (A) Top squared plots show the generalization across time matrices, with only 
classification accuracies significantly above chance (p < 0.05, uncorrected). Bottom plots show 
the diagonal of the upper matrices, where train and test times were the same. Gray horizontal 
lines indicate theoretical chance level (0.5). Thick lines and filled areas represent time periods 
with classification accuracy significantly above chance (cluster corrected for multiple comparisons, 
p < 0.05). (B) Boxplots represent classification scores across subjects (individual dots) for the 
ERPCov model, which integrates the information over 0 – 700 ms (* = p < 0.01, second-level 1-
sampled t-test). 

 

Importantly, comparisons showed that operand 2 was decoded with higher classification 

accuracy than operand 1 (between 0 – 400 ms: mean operand 2 =  0.31, SD = 0.029; mean 

operand 1 = 0.27, SD = 0.016, F(1, 19) = 67.706, p < 0.001; η2 = 0.414 and between 400 - 800 

ms: mean operand 2 = 0.284, SD = 0.018; mean operand 1 = 0.26, SD = 0.012, F(1, 19) = 41.776, 

p < 0.001; η2 = 0.382), and for a longer time period (see also Figure 4.11). This observation 

suggests that more intense brain activity occurred after operand 2 than after operand 1, in 
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agreement with the fact that, at this time, subjects were able to start their calculation, a process 

whose length depends on the size of the min operand (or the smallest operand) (Groen & Parkman, 

1972; Pinheiro-Chagas, Dotan, et al., 2017; Uittenhove et al., 2016), which in the present 

experiment is always operand 2. A potential confound that could explain the higher decoding 

accuracy observed in operand 2 is the presence of 0, since it has been proposed that problems with 

0 might engage a non-calculation rule-based strategy (Ashcraft & Battaglia, 1978), therefore 

facilitating their classification. We tested and refuted this possibility, by excluding the 0s. Even 

with a smaller data set, the classifier for operand 2 significantly outperformed the one for operand 

1 (0 – 400 ms: p = 0.015, η2 = 0.146 and 400 – 800 ms: p = 0.005, η2 = 0.188). 

 

4.5.1.5  Proposed result  

As expected, the proposed result was not decodable before its appearance on screen. 

Similarly to operand 1, it was transiently decoded starting from 92 ms, with a peak at 166 ms and 

remained above chance only until around its offset (p < 0.05, corrected).  

 

4.5.1.6  Correctness 

The correctness of the trial judged by the subject was significantly classified above chance 

from 172 ms after the onset of the proposed result with a peak at 248 ms and remained significant 

all the way until the end of the epoch (p < 0.05, corrected). We did not observe any significant 

decoding score for the absolute distance between proposed and correct result (1 - 4), in line with 

the absence of a distance effect in RT. Relative to the onset of the proposed result, the response 

side started to be significantly classified above chance at 196 ms, with a peak at 484 ms, and this 

effect also lasted until the end of the epoch (p < 0.05, corrected). Note that the classifiers for 

response side and response correctness were orthogonal, since the response buttons were switched 

in the middle of the experiment (see Methods). A better way to look at the relationship between 

the judgment of the correctness and the response side, is to time-lock the epochs to the key press. 

This analysis clearly showed a slow ramping of the classification score for the correctness starting 

at -428 ms with a peak at -100 ms followed by a drop just before the response (p < 0.05, corrected). 
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On the other hand, the fast ramping of the classification score for the response side started at -

212 ms and sharply increased to almost perfect classification at around 24 ms before the button 

press.  

 

4.5.1.7  Generalization across time 

To investigate the dynamics of calculation, we conducted a generalization across time decoding 

analyses (King & Dehaene, 2014), which revealed that the features of operand 1, operation sign, 

and operand 2 were decodable when train and test times were approximately the same (‘diagonal 

decoding’ Figure 4.7). This analysis therefore suggests that each of these items launched a series 

of internal processes whose underlying codes dynamically changed along the trial. Nevertheless, 

the generalization-across-time matrix was broader for operation sign and for operand 2, transiently 

turning into a square pattern characteristic of sustained activity (Figure 4.7). Furthermore, while 

the operand 1 and the proposed result were only transiently decoded during the time window that 

the stimuli was visually present, the operation, operand 2, correctness and response side had 

classification scores above chance that lasted for a longer time window.  

 

4.5.2  Representational similarity  

The decoding analysis does not directly reveal the precise stimulus dimensions that allowed 

the classifier to perform above chance level. In particular, we wanted to further investigate the 

representational geometries underlying the responses evoked by the operands and the result. For 

that, we turned to representational similarity analyses (RSA). 

 

 

Figure 4.4 Theoretical predictors of dissimilarity matrices 
Dissimilarity matrices were calculated using all 32 additions and subtraction problems, sorted by 
operand 1, then by operation (additions first) and finally by operand 2: (3+0, 3+1, 3+2, 3+3, 3-
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0, 3-1, 3-2, 3-3, etc., see Figure 4.8). Visual models were calculated using a method that rates the 
similarity of the digits based on their putative responses in inferior temporal cortex. Magnitude 
models used the numerical distance between numbers. For the operation, the matrix was composed 
by 0s (same operation) and 1s (different operations).  

 

Several RSA models were constructed to test specific relationships between different 

dimensions of the stimuli and the MEG signals. The theoretical representational dissimilarity 

matrices (RDM) were constructed using the 32 additions and subtraction problems, which we 

sorted by operand 1, then by operation (additions first) and finally by operand 2: (3+0, 3+1, 3+2, 

3+3, 3-0, 3-1, 3-2, 3-3, etc., see Figure 4.8). Seven theoretical RDM matrices were constructed, 

either based on the magnitude dissimilarity (numerical distance) or visual dissimilarity (using a 

method that captures the hypothetical responses of inferior temporal cortex), separately for 

operand 1, operand 2, and the correct result, plus a matrix for category-based similarity for 

addition vs. subtractions (see Figure 4.4). Those theoretical matrices were used as regressors on 

the observed matrices derived from the MEG data, i.e., the dissimilarities between the 32 averaged 

event-related MEG topographies. Such regressions were conducted at each time step, thus allowing 

us to visualize the time course of the corresponding neural codes. 

We first tested whether and when the visual and magnitude dimensions of the operands 

could be recovered from MEG signals. As can be seen from Figure 4.5, both the visual and 

magnitude models of the operands had significant correlations with the observed RDM following 

operand onset. Specifically, the visual model of operand 1 showed a significant effect at 128 ms 

after visual appearance of operand 1, with a peak at 168 ms and lasting up to 544 ms (p < 0.05, 

corrected for multiple comparisons). Around the same time, the magnitude model for operand 1 

had a smaller, but significant effect, starting at 112 ms with a peak at 328 ms and lasting until 

328 ms (p < 0.05, corrected). For operand 2 the pattern was somehow inverted. The magnitude 

model had a stronger effect which started at 1,664 ms (94 ms after the onset of operand 2, which 

occurred at 1,570 ms). This effect peaked at 1,704 ms and lasted until 2,608 ms (p < 0.05, 

corrected), i.e. longer than the visual model (start = 1,672 ms, peak = 1,808, lasting until 2,392 

ms, p < 0.05, corrected). 
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Since the visual and magnitude models partially correlated with each other, we next 

investigated the unique variance explained by each model, while regressing out the effect of the 

other model. 

 

Figure 4.5 Representational geometries of the operands 
A series of RSA models (see Figure 4.4) were used to investigate the temporal dynamics of the 
representation of operand 1 and operand 2. Correlations between the theoretical and observed 
dissimilarity matrix were performed at each time sample. We first correlated the RSA for single 
predictors (visual and magnitude, lines 1 and 3). Next, to test the unique variance explained by 
each model, we partialled out the effect of the other model (visual – magnitude and magnitude – 
visual; lines 2 and 4). Gray horizontal lines indicate theoretical chance level. Thick lines and filled 
areas represent time periods in which the second-level statistical tests across subjects revealed a 
correlation coefficient significantly above 0 (cluster corrected for multiple comparison, p < 0.05).  
 

For operand 1, the magnitude model did not reach statistical significance at any time point 

after regressing out the visual model. Conversely, the visual model had two small significant values 

at ~ 224 ms and ~544 ms after controlling for the magnitude model (p < 0.05, corrected). In 

contrast, the magnitude model remained significant for operand 2 after regressing out the effect 

of the visual model from 1,672 to 2,360 ms (p < 0.05, corrected). Conversely the visual model also 

remained significant after controlling for the magnitude model, but for a shorted period, from 

1,696 to 2,103 ms (p < 0.05, corrected).  

 Overall, the RSA corroborates the decoding results, by showing that the representational 

geometry can be better retrieved from MEG signals for operand 2 compared to operand 1. 

Crucially, the RSA revealed that both visual and magnitude dimensions of the operands are coded 
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at about the same time. While the dominant dimension for operand 1 was visual, both visual and 

magnitude dimensions could be independently retrieved from operand 2, but with a predominance 

of the magnitude dimension. 

 

4.5.3  Inability to decode the internally computed result  

 We next searched the data for a representation of the internally computed correct result 

(i.e. A+B or A-B, depending on the operation) (Figure 4.6). The visual model had no significant 

effect across the entire trial. The magnitude model was transiently significant, but only right after 

the presentation of the operation sign, that is, before the actual calculation could have started. 

Therefore, this result was probably driven by the correlation between the magnitude and the 

operation sign, since our experimental design had additions and subtractions matched by operands, 

thus additions produced overall higher results and subtractions smaller results (see Methods). 

Confirming this intuition, after regressing out the effect of the operation model, the magnitude 

model did not explain any unique variance, whereas conversely the effect of operator was virtually 

unchanged when regressing out the magnitude model of the result and it even showed a transiently 

reactivation after the presentation of the equal sign, similarly to the decoding analysis (see Figure 

4.2). Additional classifiers using Ridge Regression corroborated this finding: the correct result 

could only be transiently decoded right after the presentation of the operation sign, probably 

because the classifier learned to discriminate additions vs. subtractions (see Figure 4.9), which 

sufficed to classify the correct result slightly above chance level.   

Because we were surprised at our inability to decode the internal computed result, we 

performed several additional analyses, but none were successful. Here we briefly describe the 

rationale behind each strategy. First, we explored event related fields (ERF) at the univariate 

level, using Fieldtrip cluster-based method. Within the time window between operand 2 and the 

equal sign, or between operand 2 and proposed result (when subjects are supposedly performing 

the exact calculation), the cluster-based permutation test did not reveal any cluster with a 

significant correlation with the correct result. We first did this analysis while grouping together 
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additions and subtractions, then replicated it while analyzing them separately, and also within 

each group of MEG sensors, to no avail.  

 

 
Figure 4.6 Attempting to decode the internally computed result 
We first correlated the RSA for single predictors of the result (visual and magnitude, lines 1 and 
2). Next, to test the unique variance explained by each model, we partialled out the effect of the 
operation (line 3) from the magnitude model (line 4) and vice versa (line 5). Gray horizontal lines 
indicate theoretical chance level. Thick lines and filled areas represent time periods in which the 
second-level statistical tests across subjects revealed a correlation coefficient significantly above 0 
(cluster corrected for multiple comparison, p < 0.05).  
  

As regards multivariate analyses, we first attempted to predict whether the internally 

computed result was 3, 4, 5 or 6. The rationale, as explained in the Methods section, was that 

experimental design used additions and subtractions matched by operands, thus imposing an 

inhomogeneity on the distribution of results. Therefore, for the main decoding analysis, we only 

used the most homogeneously distributed results (numbers 3-6), which overall represented 62.48 % 

of the trials. As described earlier, this analysis did not result in any significant decoding score. 

We reasoned that if the brain signals associated with the computed results are weak, it might be 

better to first train the decoder on an explicitly presented number using a large training set, and 

only test its generalization to the internally computed result. This was done by training the model 
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to decode the operand 1 during the first 800 ms, and then testing its generalization to the internally 

computed result. At no time point prior to the presentation of the correct result did we find any 

significant cross-generalization classification score.  

We also trained a classifier to decode the proposed result (when it was correct) time-locked 

to the proposed result (for 800 ms) and tested if it could generalize backwards to the correct result 

at the time window between the operand 2 and the proposed result. This model only included 30% 

of the trials and learning was not above chance for decoding the proposed result, therefore no 

generalization could be tested on the internally computed result.  

Another possibility is that the result is coded in the spectral domain, perhaps within a 

specific frequency band. To explore that, we used a searchlight approach in time, sensor space 

and frequency (using the Matlab Cosmo MVPA Toolbox (Oosterhof, Connolly, & Haxby, 2016)). 

We fitted a series of linear discriminant analysis (LDA) estimators (instead of SVM, for 

computational simplicity) with our standard cross-validation scheme to classify the main variables 

of interest (operand 1, operation, operand 2 and result), with the following procedure. First, we 

selected two frequency bands (low: 1 – 34 Hz and high: 34 - 100 Hz). Next, we selected one sensor 

(only gradiometers) to be the center of the “sphere” and included its 10 closest neighbor sensors. 

The matrix of features was therefore composed of single-trial MEG frequency power signals (X, 

shape = ntrials x (10sensors  x 1time sample x 1frequencies)). No significant classifications scores were found in 

the high frequencies. As can be seen in Figure 4.10, the operand 1, operation and operand 2 could 

be decoded generally from occipital-parietal sensors, at a short time window following their 

respective onsets and mostly between 3 to 20 Hz, a frequency band which corresponds to event-

related signals and is a classical finding for visually presented stimuli (King, Pescetelli, & Dehaene, 

2016). However, no sign of above-chance classification was found for the result in any group of 

sensors at the time point between the operand 2 and the proposed result and in any frequency.  

Finally, we reasoned that, if the computation time varied on a trial-by-trial basis, the brain 

response induced by the internally computed result could be brief and diluted in time, thus 

obscuring its decodability when the trials were time-locked to operand onset. We tried to overcome 

this timing issue by computing the Fourier spectrum of the low-pass signal in the low frequency 
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range (2 – 34 Hz) using the entire time window from B to C, then feeding the classifier with a 

feature matrix of single-trial MEG frequency power (X, shape = ntrials x n frequencies). The logic is 

that once phase information is removed, the Fourier spectrum is invariant for temporal delays. 

No significant classification was found. Additionally, we tested a classifier based on Riemannian 

geometry using a covariance matrix estimation that integrates the temporal information (ERPCov, 

see Methods). This pipeline was applied to classify the operand 1, operation, operand 2 and result, 

in two time windows (0 – 800 ms and 800 – 1,600). Results are summarized in Figure 4.11. As 

can be seen, the ERPCov classifier boosted the classification accuracies for operand 1, operation 

and operand 2 (especially in the 0 – 800 ms window), but yielded no significant classification 

accuracy for the result. Therefore, we conclude that in the current dataset, the internally computed 

result could not be decoded from MEG signals.  

 

4.6  Discussion 

By combining time-resolved multivariate pattern analysis (MVPA) to MEG signals, we 

obtained a comprehensive picture of the unfolding processing stages underlying arithmetic 

calculations. Our verification task, using sequentially presented addition and subtraction problems, 

allowed us to investigate the main components of mental arithmetic: encoding of the operands, 

processing of the operation sign, calculation, decision of correctness, and finally response 

preparation and execution. Overall Global Field Power (GFP) revealed that the activity was 

sustained during the entire trial, with additional transient peaks at ~150 ms after each stimulus. 

MEG topographies showed that the evoked responses evolved across time from posterior to 

anterior sensors, both after each stimuli onset and also across the entire trial, which fits nicely 

with previous electrophysiological findings on arithmetic processing (Dehaene, 1996) and visual 

object processing in general (Cichy, Pantazis, & Oliva, 2014; King et al., 2016; Sergent, Baillet, 

& Dehaene, 2005).  
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4.6.1  A cascade of partially overlapping processing stages in mental 

arithmetic  

Crucially, we could decode a series of calculation features, revealing a cascade of partially 

overlapping brain states during the solution of a problem as simple as 3+2=5. First, we could 

transiently decode the identity of the operand 1 between 112 - 640 ms after stimuli onset. Next, 

the operation (addition vs. subtraction) could be decoded from 95 ms after the onset of the 

operation sign, dropping somewhat 700 ms after the sign, but remaining above chance until the 

offset of operand 2, with a subsequent transient recovery after the onset of the equal sign 

(significant decoding for ~2,000 ms). The high initial classification score is most likely due to the 

visual difference between the operation signs, but could also reflect task-specific preparation, such 

as operator priming (Fayol & Thevenot, 2012) as well as visual-spatial mechanisms or spatial-

numerical associations (Hartmann et al., 2015; Masson & Pesenti, 2014; Mathieu, Epinat-duclos, 

Léone, et al., 2017; Mathieu et al., 2016), as would follow from the idea that calculation is 

essentially a movement along the mental number line (Knops, Thirion, et al., 2009; Knops, 

Viarouge, & Dehaene, 2009; Pinheiro-Chagas, Dotan, et al., 2017). In line with this hypothesis, 

we found that a classifier trained on discriminating subtractions vs. additions cross-generalized 

and accurately discriminated smaller vs. larger numbers, respectively, but only at the time of 

presentation of operand 2, which is probably the stage in which subjects are calculating or 

manipulating quantities. In fact, the identity of the operand 2 could be decoded for an extended 

time window, ranging from 102 ms after stimulus onset till the offset of the equal sign, thus 

partially overlapping with the decoding of operation for about 1,000 ms. This results fits with our 

recent behavioral findings that the operator sign transiently affected the decision about the 

location of the result of arithmetic calculations on a number line (a plus sign attracted the finger 

to the right [larger results] and a minus sign to the left [smaller results]) around the time that 

subjects were processing operand 2 (Pinheiro-Chagas, Dotan, et al., 2017).  The existence of a 

code that is partially common across the elaboration of an arithmetical sign and a number also 
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comes from behavioral data showing that both stimuli (an arithmetical sign and a number) trigger 

shifts in spatial attention that are consistent with a left-to-right oriented representation, thus 

facilitating target detection (Fischer et al., 2003; Mathieu et al., 2016). 

Importantly, operand 2 was classified with a higher accuracy as compared to operand 1 

(Figure 4.2 and Figure 4.11), suggesting that more intense and more stable brain activity occurred 

after operand 2 than after operand 1. This is understandable given that, at this stage subjects 

were able to start calculating, a process whose duration depends on the size of the min operand 

(or the smallest operand) (Groen & Parkman, 1972; Pinheiro-Chagas, Dotan, et al., 2017; 

Uittenhove et al., 2016), which in the present experiment is precisely operand 2. These results also 

fit with recent neurophysiological findings. An ECoG study using an essentially identical 

verification task (Hermes et al., 2015) showed that neuronal populations in the ventral temporal 

cortex (VTC) have stronger activity following operand 2 as compared to operand 1, with an 

averaged time course very similar to our Figure 4.1B. This finding was interpreted as suggesting 

that the VTC activity is modulated by task demands, in this case the actual manipulation of 

numbers, which can only happen after operand 2 (Hermes et al., 2015). A more recent ECoG 

study revealed that in addition to the number form area (NFA) in the ventral temporal cortex 

(VTC), which selectively responds to numerical digits independently of the presentation context 

(Shum et al., 2013, for reviews see Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 

2015; Price, Yeo, Wilkey, & Cutting, 2016), there are neuronal populations in the posterior inferior 

temporal gyrus (pITG) (just adjacent to the NFA), that respond slightly later (~10 ms) and 

exhibit more sustained activity than the NFA. Crucially, these lateral sites respond only when 

numerals are presented in the context of a calculation or, in the case of the sequentially presented 

verification task, only for operand 2 and the proposed result, but not for operand 1 (Daitch et al., 

2016). Thus, these results provide a plausible psychophysiological basis for our finding that 

operand 2 can be decoded with a higher accuracy as compared to operand 1.  
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4.6.2  The representational geometries of the operands 

Although those ECoG studies were very informative about the fine-grained spatial-

temporal dynamics of calculations, they did not provide any direct indication about the nature of 

the underlying representations of the operands. Here, to investigate this question, we applied time-

resolved representational similarity analysis (RSA). Our results indicated that while for operand 

1 the dominant dimension represented was visual, for operand 2 both visual and magnitude 

dimensions explained unique variance in the MEG signal. A similar conclusion, corroborating this 

finding, could be drawn from the results of the regression classifier (Figure 4.9), in which only the 

classifier for operand 2 achieved above chance performance. Although a natural prediction for 

operand 2 would be that the visual dimension precedes and partially overlaps with the magnitude 

dimension, we observed an effect of the two dimensions starting practically at the same time, at 

~100 ms after stimuli onset, but the magnitude dimension was predominant and lasted longer 

(Figure 4.2). As ECoG suggested that the difference in latency between NFA and both pITG and 

IPS is very small (~14 ms), it is possible that we did not have a high enough signal-to-noise ratio 

to separate in time the visual and magnitude dimensions with MEG. Further ECoG studies 

specially designed for this purpose could provide a definitive answer. It is also important to note 

that in our experiment, the magnitude of the operand 2 defines the problem-size, the size of the 

min operand that needs to be added or subtracted, and which is known to be a major determinant 

of calculation duration and difficulty (Groen & Parkman, 1972; Pinheiro-Chagas, Dotan, et al., 

2017). Therefore, the decoding of operand 2 and its correlation with the magnitude model of the 

RSA could be a combination of the quantity representation and the calculation process itself. 

Future experiments should aim at disentangling these two processes.  

 

4.6.3   Parsing the processing stages of arithmetic decision-making 

 At the decision stage (Figure 4.2, time-locked to C), we found a fast and highly overlapping 

dynamics of identifying the proposed result (from 92 till 400 ms), judging whether it was correct 

or incorrect (from 172 ms till the  end of the trial) and finally pressing the response button (from 
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196 ms till the end of the trial). The last two stages were better observed when time-locking the 

signal to the RT. We could see a slow ramping in the decoding of the correctness starting at -428 

ms before the RT and persisting until the end of the trial, followed by a fast and sharp increase 

of classification score for the response button at -212 ms before the RT (Figure 4.2). It is important 

to highlight that those three features (proposed result, correctness and response button) are 

orthogonal to each other in our experimental design, so the classifiers could no rely on a single 

feature to perform above chance level.  

The proposed result was transiently decoded after its onset, but we did not observe a 

distance effect for the incorrect trials (absolute distances = 1 - 4) in both behavioral and 

electrophysiological levels (no significant decoding scores), which is at odds with previous positive 

findings (Avancini, Galfano, & Szucs, 2014; Avancini et al., 2015; Dehaene, 1996). We believe that 

this null finding was probably due to a combination of the small distances used (1 - 4), and the 

slow pace of our experimental design. As a result, subjects probably had the correct result in mind 

for at least 1 s before the proposed result appeared, and could perform a fast symbolic same-

different judgement without showing any influence of numerical distance. 

 

4.6.4  Temporal dynamics of the decoding patterns  

The decoding patterns of the calculation features observed in this experiment are far from 

being trivial and deserve attentive consideration. Due to the sequential structure of our task, a 

series of information had to be maintained in working memory. For example, to correctly perform 

the task, subjects needed to keep in mind the operand 1 at least until the operand 2 was presented. 

Yet, surprisingly, the classification score for operand 1 rapidly decreased to chance level after 

stimulus offset and remained so until the end of the trial. A similar result was observed in a series 

of working memory studies in which the information could not be decoded in a sustained way 

during the memory maintenance period, suggesting that, contrary to previous suggestions, working 

memory may not be encoded by a stable pattern of sustained activity (LaRocque, Lewis-Peacock, 

Drysdale, Oberauer, & Postle, 2013; Sprague, Ester, & Serences, 2016; Trübutschek et al., 2017; 

Wolff et al., 2017). A slightly different decoding time course was observed for the operation and 
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operand 2: both features remained decodable for a much longer time (above 1,000 ms), although 

again with a drastic drop in accuracy after 800 ms.  Finally, remember that we could not the 

internally generated result, even though subjects were instructed to compute it and keeping it “in 

mind” during the delay prior to the appearance of the proposed result.  

Several theories may explain either the complete absence of decodable sustained activity, 

or the strong decrease in the decoding performance, during the various delay periods of our 

arithmetic task. First, instead of stable sustained neural firing, information might be maintained 

in working memory through occasional gamma and beta bursts (Lundqvist et al., 2016) which 

would therefore be diluted in time and which our MEG signals might not be sensitive enough to 

capture. Second, the coding scheme to store information in working memory may not be through 

persistent neuronal firing, but through short-term synaptic changes (Mongillo, Barak, & Tsodyks, 

2008), so called ‘silent states’ (Stokes, 2015; Trübutschek et al., 2017) and therefore may not be 

directly measurable with conventional neuroimaging methods. Finally, a third possibility is that 

the neural coding schemes changes across successive stages from an easily decodable spatial code 

based on large cortical columns in posterior areas, to a more microscopic and sparse code in the 

prefrontal cortex and other associated areas, based on overlapping neural populations and 

orthogonal vectors (Mante, Sussillo, Shenoy, & Newsome, 2013), which may therefore not be 

detectable with MEG. All three possibilities are plausible, and fine-grained electrophysiological 

recordings will be needed to separate them. 

The temporal generalization analysis (King & Dehaene, 2014) revealed that the underlying 

codes of the main calculation features are highly dynamic along the trial, as indicated by a diagonal 

generalization-across-time matrix showing that they remained decodable only when train and test 

time were similar. (Figure 4.7). The sole exception was around 200-400 ms after the presentation 

of the operation sign and operand 2, where a thicker diagonal, closer to a square pattern of 

generalization, suggested a more stable neural code. Such a succession of diagonal and then square 

pattern has been systematically observed in several studies (Crouzet, Busch, & Ohla, 2015; King 

et al., 2016; Marti, King, & Dehaene, 2015; Stokes, Wolff, & Spaak, 2015; Trübutschek et al., 

2017) and has been interpreted (King et al., 2016; Trübutschek et al., 2017) as compatible with 
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classical cascade models (McClelland, 1979), suggesting that information is encoded by an initial 

cascade of successive neural codes, followed by a more sustained (though still transient) activity 

during later decision or working-memory stages. It also corroborates a series of functional and 

anatomical findings on the highly hierarchical organization of the cortex (Chaudhuri, Knoblauch, 

Gariel, Kennedy, & Wang, 2015; Cichy & Teng, 2016; Felleman & Van Essen, 1991; King et al., 

2016; Rajalingham, Schmidt, & DiCarlo, 2015). Because of the series of mental transformation 

involved in our task, some of the features could be discarded along the way and substituted by 

their transformed or combined version. For example, the operands probably underwent a series of 

visual processing stages before their symbolic identity was established. Similarly, during 

calculation, operand 1, operand 2 and the operation sign were probably transformed into an 

internal representation of the  computed result after the presentation of operand 2, and from this 

stage on, the task required only that result to be maintained in working memory for later 

comparison with the proposed result.  

 

4.6.5  The search for the neural correlates od the internally computed result  

With this idea in mind, we systematically searched for a neural signature of this internally 

computed result. Surprisingly, however, none of our attempts were successful. Could this finding 

arise from limitations in our experimental design? One potential weak point is that our task did 

not allow to establish the precise moment when the calculation was completed, which probably 

varied on a trial-by-trial basis. Our hypothesis, however, was that the activity induced or evoked 

by the correct result would last until the proposed result appeared, so that we would decode it 

without necessarily time-locking the signal to the peak of activation generated by the correct 

result. For instance, although RT systematically varies across trials, we did not need to time lock 

the response button press to RT to achieve above-chance classification score when decoding the 

response side (Figure 4.2). This strategy did not work, however, for the internally computed result. 

To overcome this potential timing limitation, we tried some decoding models which received as 

input the induced oscillatory activity in a wide frequency range and one model that used 

Riemannian geometry (Barachant & Congedo, 2014) and embeds the temporal information of the 
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signal by concatenating along the sensor axis the averaged ERF (across trial) of each class, and 

is therefore well suited to capture both evoked and induced responses. Although the latter 

estimator indeed boosted decoding scores for the other calculation features of interest (operand 1, 

operation and operand 2), it showed no improvement to decode the correct result. After testing 

several robust state-of-the-art decoding models, we therefore conclude that the internally 

computed result of a simple arithmetic calculation is not as easily decodable from MEG signals as 

the externally presented stimuli. This finding could originate from the same three explanations 

listed above to account for the vanishing of the codes for operand 1 and 2: brief bursts of gamma 

or beta activity; short-term synaptic codes; or overlapping neural microcodes.  

Additionally, it is also possible that, since we used a verification task, subjects did not 

need to calculate in every trial. They could use a range of rule-based strategies, such as comparing 

the parity and size between the operands and the proposed result. However, subjects were 

explicitly asked to calculate in order to judge as fast as possible the correctness of the proposed 

result. Moreover, a series of findings indicate that they did indeed engage in calculation. First, we 

could decode the additions vs. subtractions ~2,000 ms after the onset of the operation sign, 

overlapping with the decoding of the operand 2 for about 1,000 ms. Second, we found higher 

classification accuracies for decoding the operand 2 vs. operand 1, and the magnitude model in 

the RSA was dominant for predicting operand 2. These results suggest that the actual calculation 

process was initiated after the onset of operand 2 and lasted until the offset of the equal sign 

(around 1,200 ms), when both operation type and operand 2 could no longer be decoded.   

MEG decoding has been successfully applied to characterize the spatial-temporal dynamics 

of several cognitive functions, such dual-task interference (Marti et al., 2015), attention 

(Brandman & Peelen, 2017; Kaiser et al., 2016), working memory (King et al., 2016; Trübutschek 

et al., 2017; Wolff, Jochim, Akyürek, & Stokes, 2017), reward value (Bach et al., 2017), taste 

perception (Crouzet et al., 2015), object recognition and categorization (Carlson et al., 2011, 2013; 

Cichy et al., 2014; Isik et al., 2014), written and spoken language (Chan et al., 2011; Kocagoncu 

et al., 2017), etc. However, virtually all of these studies either used classifiers that could rely on 

activity evoked by low-level sensory properties of the stimuli (or mental imagery), or probed 
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classical semantic categories that are known to be anatomically segregated. Therefore, evidence 

for within category time-resolved decoding at the single-trial level of abstract internally generated 

mental objects is still lacking. One reason might be that such mental objects, like the result of a 

calculation, are represented in a highly distributed fashion, difficult to measure with non-invasive 

methods that have a relatively low signal-to-noise ratio, therefore suggesting the existence of 

different neural substrates for externally and internally generated codes.  

 

4.6.6  Conclusion 

Despite our inability to decode the internally computed result, our study is the first to 

directly obtain a comprehensive understanding of the unfolding processing stages and mental 

transformations during arithmetic calculations at a single-trial level. We could decode a series of 

calculation features, revealing a highly dynamic coding profile and a cascade of partially 

overlapping brain states during elementary arithmetic, therefore increasing our understanding of 

the neurocognitive underpinnings of high level symbolic cognition. 
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4.8  Supplementary Materials 

 

 

Figure 4.7 Generalization across time matrices during calculation 
To characterize the dynamics of the mental representations underlying calculation, we tested how 
the classifiers of the main calculation features generalized in time. Results indicate a succession of 
dynamical internal codes (diagonal pattern). The plots only show the classification accuracies that 
were significantly above chance (second-level statistical tests across subjects, with p < 0.05, not 
corrected for multiple comparison). 
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Figure 4.8 Matrix structure used for the RSA 
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Figure 4.9 Decoding the calculation features using regression 
Ridge Regression estimators were used to decode main calculation features, thus looking for a 
monotonic relationship between brain signals and the corresponding numbers. Trials were time-
locked to three events of interest: onset of the operand 1 (A), onset of the proposed result (C) and 
RT. Gray horizontal lines indicate theoretical chance level. Thick lines and filled areas represent 
time periods in which the second-level statistical tests across subjects revealed a Kendall’s tau 
significantly above 0 (cluster corrected for multiple comparison, p < 0.05).  
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Figure 4.10 Searchlight decoding in time, sensor space and frequency 
To exhaustively explore the decoding of the main calculation features, in time, sensor space and 
frequency, we fitted a series of linear discriminant analysis (LDA) in a searchlight approach. The 
topoplots on the left show the classification accuracy (color axis) in each ‘sphere’ of 10 neighbor 
sensors, for each time (x axis) and low frequency samples (2 - 34 Hz) (y axis). Averaged ‘spheres’ 
qualitatively chosen after visual inspection are zoomed in the right plots. Operand 1, operation 
and operand 2 could be generally from occipital-parietal sensors, at a short time window following 
their respective onsets and mostly between 3 to 20 Hz. For the result, we found no indication of 
decoding accuracy above chance level in the time window between B and C (when exact 
calculation is expected to happen).  
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Figure 4.11 Decoding calculation features with Riemannian geometry 
The ERPCov classifier was used to decode the main calculation features in two time windows (0 
– 800 ms and 800 – 1,600).  Boxplots represent classification scores across subjects (individual 
dots). Gray horizontal lines indicate theoretical chance level. (* = p < 0.01, second-level 1-sampled 
t-test). Classification accuracies were highly boosted as compared to time by time SVM, specially 
for the operation and operand 2 in the time window of 0 – 800 ms. No significant classification 
accuracy was found for the internally computed result.  
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  GENERAL DISCUSSION 

In the present dissertation, I investigated the neurocognitive mechanisms of arithmetic 

thinking by using a multimethod approach, which combined continuous behavioral measures, 

electrocorticography and machine leaning applied to magnetoencephalography signals. This 

methodological toolkit allowed me to parse and characterize a series of processing stages and 

representational codes underlying numerical computations in the human brain.  

Below, I will recapitulate the main findings of each study and discuss them in a broad 

context, acknowledging the limitations and highlighting some of the outstanding unanswered 

questions, which constitute the basis for the future directions of my research program.  

 

5.1  Simple additions and subtractions rely on quantity manipulation 

Over the past four decades, the cognitive arithmetic literature has converged to the 

hypothesis that elementary arithmetic problems are solved via direct retrieval from verbal long-

term memory, with no need for quantity manipulation (Ashcraft, 1992; Campbell, 1987; Siegler, 

1987; Zbrodoff & Logan, 2005). However, as discussed in the Introduction, the widely replicated 

problem-size effect and the recently discovered operational momentum (OM) effect, even in small 

single-digit operations, poses serious challenges to pure fact-retrieval based models (Barrouillet & 

Thevenot, 2013; Pinhas & Fischer, 2008; Uittenhove et al., 2016). Since most prior studies used 

mental chronometry, which solely relies on summary measures of behavior accumulated over time, 

it has not been possible to more directly investigate the ongoing processes involved in numerical 

computations  

In Chapter 2, I showed how a novel continuous behavioral method, based on trajectory 

tracking, can dissect the calculation process and reveal the absolute timing of the covert stages 

involved in computing single-digit calculations. Subjects solved single-digit additions and 

subtractions on a tablet computer, and responded by pointing to the position of the result on a 
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horizontal number line ranging from 0 – 10, while their finger movement was constantly recorded. 

Next, I applied a series of time-resolved multiple repression models, using the position of the finger 

projected onto the line (implied endpoints) as the dependent variable and different features of the 

operations as predictors. I found that the two operands were processed serially, both in additions 

and in subtractions. The finger first pointed to the larger operand, irrespectively of its position, 

and only then veered towards the correct result. This slow deviation unfolded proportionally to 

the size of the smaller operand, in such a way that subjects seemed to pass through intermediate 

results before achieving the final correct location. In the case of additions, movement times (the 

correspondent of RT in this task) were longer when the smaller operand appeared first, possibly 

reflecting an additional stage of reordering the operands prior to calculation. Further evidence 

supporting a model based on quantity manipulation in simple arithmetic comes from the 

representational similarity analysis (RSA) findings presented in Chapter 4, where I showed that 

the dominant representational code underlying the second operand was based on the magnitude 

as, opposed to the visual dimension of the stimulus.  

I also observed a transient operator effect: a plus sign attracted the finger to the right and 

a minus sign to the left. Crucially, the timing of transient bias coincided with the timing when 

the smaller operand affected the finger movement. This suggests that the OM effect is directly 

related to the calculation procedure and rejects the possibility that it originates solely from post-

calculation processes (e.g., that small vs. large computed results attract attention to left vs. right 

side, respectively). Interestingly, in Chapter 4 I showed that a classifier trained to discriminate 

subtractions vs. additions (at the time window when the operation sign appeared on screen) 

generalized to classify smaller vs. larger values of the second operand. These results are in line 

with the hypothesis that the representation of the minus vs. plus operators shares a common code 

with the representation of smaller vs. larger numbers. Such a shared code could be ultimately 

grounded in a basic mechanism of reorienting of attention towards the left vs. right side of the 

space (Fischer et al., 2003; Knops, Viarouge, Dehaene, et al., 2009; Knops, Thirion, et al., 2009; 

Mathieu, Epinat-duclos, Sigovan, et al., 2017; Mathieu et al., 2016).  
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Subtractions were solved more serially than additions, even when the operands were the 

same in both operations. Interestingly, I found that the absolute value of the smaller operand was 

transiently processed in subtractions. Therefore, a potential explanation of the common findings 

that subtractions are generally solved slower than additions (Seyler et al., 2003), - and in the 

present study also more serially – is that one additional processing stage may be required in 

subtractions: the conversion of the absolute value of the subtrahend into a negative number. It is 

also possible that the fundamental mechanism of ‘increment’ in additions, as opposed to 

‘decrement’ in subtractions, is implemented in a slightly more efficient way. A hint for this latter 

hypothesis comes from the recent work by de Hevia et al. (2017): they showed that human infants 

detect increasing numerical order earlier in life as compared to decreasing order. The authors 

speculated that this advantage for increasing sequences might have an evolutionary origin (e.g., 

is more important for survival to sum the numbers of approaching predators then subtracting the 

number of dispersing ones). Interestingly, as noted by the authors, human infants and other 

animals have already demonstrated a capacity for perceiving impeding collisions (i.e.,stimuli that 

expands on the screen) by blinking and withdrawing their heads, but show no reaction to objects 

fading away from the viewer’s location (i.e., stimuli that shrinks on the screen) (Ball & Tronick, 

1971). However, the link between these findings and arithmetic calculation is still remote and 

needs to be empirically tested.  

Overall, the results from the present dissertation support a model whereby elementary 

addition and subtraction rely on quantity manipulation and are computed by a stepwise 

displacement on the mental number line, starting with the larger number and incrementally adding 

or subtracting the smaller number. This appealing model is compatible with several previously 

proposed models – counting/summation (Groen & Parkman, 1972), fast automated procedures 

(Barrouillet & Thevenot, 2013; Uittenhove et al., 2016), and even the retrieval through a tabular 

search (Ashcraft & Battaglia, 1978). Our model should still be validated using other experimental 

designs, since it is possible that the finger-tracking task could have particularly encouraged 

subjects to adopt a quantity-based strategy. However, we believe that this is unlikely, since the 

analysis of the movement times (this task’s correspondent of RT) replicated several prior studies 
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that used conventional verbal production or verification tasks (Barrouillet & Thevenot, 2013; 

Parkman & Groen, 1971; Uittenhove et al., 2016). Finally, the neurophysiological underpinnings 

of the model still need to be further investigated.  

 

5.2  Arithmetic processing is implemented in the dorsal and ventral pathways 

Mental calculations engage a complex interplay between several brain regions (Arsalidou 

& Taylor, 2011). The traditional view, arising from neuropsychological cases and pioneering fMRI 

studies, is that the lateral parietal cortex (LPC) contains the main hubs engaged in the calculation 

mechanism per se, and that the ventral temporal cortex (VTC) plays a central role in recognizing 

Arabic numerals. The LPC and VTC are further supported by auxiliary regions, associated with 

executive functions and working memory (basal ganglia and dorsolateral prefrontal cortex, 

DLPFC), declarative and semantic memory formation (medial and lateral temporal cortex) and 

allocation of attentional resources for goal-directed problem solving (PFC) (Dehaene & Cohen, 

1995; Menon, 2014).  

Although remarkable progress has been made in characterizing a macroscopic functional 

map of arithmetic processing, the precise role of each brain region and how they communicate 

with each other still remains elusive. This is because progress in understanding the fine-grained 

neural correlates of mental calculation has been methodologically impeded by the small degree of 

specificity of brain lesions, poor temporal resolution of fMRI and coarse spatial resolution of 

EEG/MEG.  

 In Chapter 3, my goal was to re-evaluate the roles of LPC and VTC regions in arithmetic 

processing by recording electrophysiological activity directly from the human brain. This goal was 

inspired by the growing evidence supporting the hypothesis that the VTC might participate in 

mathematical reasoning beyond merely visual recognition of Arabic numerals (Abboud et al., 2015; 

Amalric & Dehaene, 2016; Daitch et al., 2016). Subjects implanted with grids of electrodes were 

asked to verify addition problems in the form of ‘15+3 =18’, in which we systematically varied 

the magnitude of the operands but preserved the same structure and number of characters, thus 
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separating numerical from low-level visual features of the stimuli.  

Behavioral performance showed a classical problem-size effect and, in line with previous 

studies and with the results presented in Chapter 2, the best predictor of RT was the smaller 

(min) operand. Therefore, I used the min operand as the index of problem-size/difficulty and 

investigated if, how, and when the min operand modulated the activity in the math-selective 

regions. Corroborating prior fMRI findings, I showed that the total high-frequency broadband 

(HFB) activity in bilateral aIPS and SPL sites increased with problem-size and correlated with 

RTs. More surprisingly, bilateral pITG sites showed an initial burst of HFB activity that decreased 

as the operands got larger, yet with a constant integral over the whole trial, and did not correlated 

with RTs. Crucially, 9 out of 10 math-selective sites in pITG, whose activity decreased as a 

function of problem-size, did not show any selectivity for Arabic numerals in a second task in 

which subjects had to identify numbers vs. letters. Only one of these sites could be classified as 

‘number form area’ (NFA). Furthermore, even in the subset of pITG sites that significantly, but 

not exclusively, responded to isolated Arabic numerals, activity was not modulated by the 

numerical magnitude. This confirms that the pITG modulation by min operand was directly 

dependent on mental calculation, and was not a by-product of putative tuning curves for Arabic 

numerals in the pITG. Therefore, while parietal sites appear to have a more sustained function in 

arithmetic computations and decision-making, the pITG may play a role in early identification of 

the problem difficulty, beyond merely digit recognition.  

The role of VTC in mental calculation seems to have been largely underestimated until 

very recently. This might be explained by several reasons, already discussed in Chapter 3. For 

example, since fMRI is only sensitive to the activity integrated over a temporal window of several 

seconds, the initial modulation observed in pITG would be undetected. Nevertheless, some 

previous studies had indeed suspected of this apparent more high-level role of VTC. Delazer, 

Karner, Zamarian, Donnemiller, & Benke (2006) reported the case of a patient suffering from 

posterior cortical atrophy (PCA), who had severe cortical reduction in the superior and posterior 

parietal cortex. Neuropsychological assessment revealed classical parietal dysfunction and severe 

numerical deficits in counting, number estimation and arithmetic calculations. In a follow-up study, 
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the authors recorded fMRI activity while the patient solved numerical and linguistic tasks. The 

contrast between counting and word recitation yield a significant cluster of activity in the inferior 

temporal cortex, suggesting that the VTC could partially compensate for the impaired numerical 

functions of the lesioned LPC (Margarete Delazer, Benke, Trieb, Schocke, & Ischebeck, 2006).  

Overall, these findings challenge classical neurocognitive models of arithmetic processing 

(Dehaene & Cohen, 1995; Menon, 2014) and, more broadly, the traditional view of the VTC as 

the last stage of the ventral stream, associated with object categorization (Grill-Spector & Weiner, 

2014). In fact, the radical distinction between the ventral ‘what’ and dorsal ‘where’ visual 

pathways might be more blurry (Freud, Culham, Plaut, & Behrmann, 2017) than initially 

proposed by Goodale and Milner (1992).  

The conclusions of Chapter 3 are restricted by several limitations, and several outstanding 

questions remain to be addressed. First, the restricted coverage of VTC and LPC regions did not 

allow us to investigate the role of other regions in mental calculation, such as the PFC and 

subcortical structures. Secondly, the number of trials was relatively low (~40) and the stimuli 

were not optimally balanced across different relevant factors of the calculations, such as the 

incorrect proposed result. Therefore, we could not model the entire activity to unambiguously 

disentangle some of the processes involved in the verification task, e.g., the addition of the two 

operands and the comparison between the correct and proposed result. Thirdly, we just had one 

subject with simultaneous coverage of VTC and LPC who also had sites with both increased IPS 

total activity and decreased pITG initial activity as a function of problem-size. Consequently, we 

could not systematically investigate how these two mechanisms interact. Lastly, and perhaps most 

importantly, it is to determine the causal roles of the specific neuronal populations within the 

VTC and LPC during arithmetic processing. One fascinating avenue is to use electric brain 

stimulation in ECoG patients to induce virtual lesions and investigate how it affects behavior. 

This approach has been successfully applied to characterize causal relationships between face 

perception and the fusiform gyrus (Parvizi et al., 2012), as well as the ‘will to persevere’ and the 

cingulate gyrus (Parvizi, Rangarajan, Shirer, Desai, & Greicius, 2013). I plan to investigate these 
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exciting issues during my post-doctoral research in Josef Parvizi’s Lab at Stanford University from 

early 2018.  

 

5.3  Decoding the processing stages of mental calculations 

The results presented in Chapters 2 and 3 offer several new insights on the neurocognitive 

mechanisms of mental calculations. However, they did not provide evidence about the nature of 

the underlying neural codes of the operands, neither a comprehensive picture of the series of 

unfolding computations in the brain. Previous studies have shown that it is possible to decode the 

identity of numbers and even the operator (additions vs. subtractions) from fMRI activity (Bulthé, 

De Smedt, & Op de Beeck, 2014, 2015; Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003; Knops, 

Thirion, et al., 2009). However, because of the slow signal recorded in fMRI, it has not been 

possible to investigate the temporal dynamics of the representational codes.  

To answer these fundamental questions, in Chapter 4, I combined state-of-the-art machine 

learning techniques with multivariate pattern analysis (MVPA) applied to 

magnetoencephalography (MEG) signals. Subjects were asked to verify sequentially presented 

single-digit additions and subtractions, such as ‘3+2=7’. This allowed me to partially segregate 

and investigate in detail the temporal evolution of the main components of mental arithmetic: 

encoding of the operands, processing of the operation sign, calculation, decision of correctness, and 

response preparation and execution.  

By fitting a series of time-resolve classifiers, I could decode several of calculation features, 

revealing a cascade of partially overlapping brain states. First, I could transiently decode the 

identity of the operand 1 from shortly after its onset until ~250 ms after its offset. Next, the 

operation (addition vs. subtraction) could be decoded from shortly after the presentation of the 

operator sign until the offset of operand 2, with a subsequent transient recovery after the onset of 

the equal sign (i.e., significant decoding for ~2,000 ms). The high initial classification score of the 

operator is most likely due to the visual difference between the plus and minus signs, but, as 

discussed before, it might also reflect the pre-activation of subtractions vs. addition calculation 
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procedures (Fayol & Thevenot, 2012; Fischer et al., 2003; Mathieu, Epinat-duclos, Sigovan, et al., 

2017; see Section 5.1). Importantly, the classification scores for operand 2 were much higher than 

operand 1 and overlapped with the decoding of the operation for ˜1,000 ms. These results suggest 

that a more intense brain activity occurred after operand 2, since at this stage subjects can start 

calculating, a process that depends on the size of the min operand (in this case, operand 2 itself; 

see Chapter 2 and Section 5.1) A possible neurophysiological basis for this result is that, 

additionally to the NFA, which responds whenever an Arabic numeral appears on the screen, 

there are some neuronal populations in the IPS and pITG that respond exclusively when numbers 

have to be manipulated in the context of a calculation, and this is precisely the case for operand 

2, but not for operand 1 (Daitch et al., 2016). Also in line with this hypothesis, time-resolved 

representational similarity analyses (RSA) revealed that while for operand 1 the dominant 

representational geometry was based on the visual features of the stimuli, for operand 2 the 

representational geometry correlated both with visual and magnitude features, and the magnitude 

dimension was the dominant one. Finally, at the decision-making stage, when subjects had to 

compare the internally computed with the proposed result, I found a fast and highly overlapping 

dynamics of identifying the proposed result, followed by judging whether it was correct or incorrect 

and finally by pressing the response button.  

Overall, the results of Chapter 4 provide a first comprehensive description of processing 

stages underlying arithmetic calculation and decision-making in the brain at a single-trial level. 

To our surprise, however, I could not decode or find the neural signatures of the internally 

computed result, which remains an interesting and mysterious problem to be solved. In the 

following section, I recapitulate some possible explanations to this null finding, and briefly present 

potential solutions.  

 

5.4  Searching for neural signatures of the internally computed result 

Throughout the present dissertation, I have presented several new contributions to our 

understanding of how the brain combines two numbers into a third. However, a fundamental 
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question remained unsolved: when and where is this third number, the internally computed result, 

finally represented? I specifically investigated this question in Chapter 4, by designing a carefully 

controlled arithmetic verification task, in which each element of the operation appeared 

sequentially. I expected to find a neural signature of the internally computed result somewhere 

between the onset of operand 2, when subjects can initiate the calculation procedure, and the 

onset of the proposed result, when subjects had to make a comparison to judge the correctness of 

the problem. However, even after applying an army of state-of-the-art machine learning techniques 

and using a searchlight approach in time, space and frequency, I was unable to decode the 

internally computed result.  

As discussed in Chapter 4, this null finding could have resulted from a combination of 

possible caveats in our experimental design (i.e., not time-stamping the moment of calculation 

and the relative small number of trials per class of result) and limitations of MEG recordings. 

Time-resolved MVPA applied to MEG signals has been mostly successful in cases in which 

decoding models could rely on the activity evoked by low-level sensory properties of the stimuli 

or when probing classical semantic categories that are known to be anatomically segregated at the 

macroscopically level (Carlson et al., 2013; Cichy et al., 2014; King et al., 2016). However, 

internally generated objects that must be maintained in working memory for relatively long 

periods of time have posed a serious challenge for EEG/MEG decoding (Trübutschek et al., 2017; 

Wolff et al., 2017), and this is precisely the case of the internally generated result of arithmetic 

calculations. Three main reasons may explain this decoding challenge. First, information could be 

maintained in working memory through rare gamma and beta bursts (Lundqvist et al., 2016). 

Secondly, the coding scheme to store information in working memory may not require persistent 

neuronal firing, but rather that of short-term synaptic changes (Mongillo et al., 2008). Lastly, the 

mental objects could have a more microscopic and sparse code in associative regions, based on 

overlapping neural populations and orthogonal vectors (Mante et al., 2013). Therefore, MEG 

recordings might have a very limited sensitivity, thus requiring a massive amount of experimental 

trials, to capture the neural correlates of internally generated representations.  



142 
 
 

My future plans to keep searching for the neural correlates of the internally computed 

result include two projects. The first one is a collaboration with Lina Teichmann, Dror Dotan, 

Leila Azizi, Thomas Carlson, Anina Rich and Stanislas Dehaene. We are going to simultaneously 

record MEG signals and finger trajectories (using a similar method used in Chapter 2) while 

subjects solve additions and subtractions. Since the two operands will be presented at once, we 

could increase the number of trials by a factor of five (as compared to Chapter 4) and still fit the 

task in a single MEG session. Furthermore, the trajectory data will hopefully provide critical 

information about the temporal evolution of the covert processing stages, which could be then 

used to inform the multivariate analyses of the MEG signals. This is an ambitious project, and 

we are still developing the most suited methods to optimally deal with MEG artifacts and possible 

confounds due to the movement. If this project is successful, we may have detailed information 

about the temporal dynamics of the result computation. Nevertheless, even in this optimistic 

scenario, we will only have a very coarse idea of where in the brain it was generated and 

maintained.  

To investigate both the temporal and spatial dynamics of the emergence of the internally 

computed result, I will use the same experimental procedures and analytical tools developed in 

Chapter 4, now applied to intracranial signals. I am especially interested in recording from a 

handful of subjects who are implanted with high density grids of electrodes, ideal for MVPA. 

 

5.5  Beyond numbers: the syntactic structure of arithmetic expressions 

So far, I have only discussed the neurocognitive mechanism of elementary arithmetic, in 

the form of simple calculations involving two operands. However, mathematics, similarly to 

natural language and music, has a generative structure, organized through a process of embedding 

constituents inside each other. This recursive way of representing information seems to be a 

uniquely human capacity (Chomsky, 1957; Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015; 

Hauser, Chomsky, & Fitch, 2002).  
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Few eye-tracking studies suggested that subjects can rapidly extract the hierarchy of the 

arithmetic expressions constituents (Landy, Jones, & Goldstone, 2008; Schneider, Maruyama, 

Dehaene, & Sigman, 2012). Inspired by these results, I conducted a study aimed to go a step 

further in dissecting the covert processing stages involved in syntactic arithmetic reasoning. For 

that, I adapted the trajectory tracking method used in Chapter 2 to investigate multi-digit and 

multi-operation arithmetic expressions of the form ‘2+(5x2)’. The included one addition outside 

the parenthesis and either one addition or one multiplication inside the parenthesis, which could 

be in either side.  

 

 

Figure 5.1 Time course of the regression effects for each type of expression 
Averaged b values across subjects, plotted as a function of time. Filled dots denote p < .05.  

 

The preliminary findings are promising. The time-resolved regression analysis indicates 

that the arithmetic expressions are processed serially: subjects first point towards the result of the 

parenthesis, irrespectively of the order in which the parenthesis appear, and then gradually deviate 
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towards the overall result. The gradual deviation unfolds proportionally to the size of the number 

outside of parenthesis (Figure 5.1). These results are in line with the model proposed in Chapter 

2. Methodologically, they show that the finger-tracking method is sensitive to capture the covert 

stages during tasks that involve more than a single decision.  

 

5.6  Conclusion 

Arithmetic is one of the most remarkable human inventions and, since the Paleolithic, it 

has been a fundamental tool in most societies throughout the history. In our increasingly 

technological culture, low numeracy represents a dramatic handicap for an individual’s life, 

consequently causing detrimental effects to the wealth of nations (Butterworth, Varma, & 

Laurillard, 2011).  

Until very recently, we had no means of understanding how mental calculation is 

implemented in the brain. But over the past few decades, with the rise of cognitive neuroscience, 

a huge progress has been achieved. This dissertation offers a modest contribution to our current 

knowledge, delineates some of the outstanding questions that still need to be addressed and, more 

broadly, shows how a multimethod approach including continuous behavioral measures and time-

resolved neuroimaging can help us to identify and characterize the mental processes of high-level 

symbolic cognition. 

I hope that some of the discoveries presented in this dissertation will contribute to building 

a bridge between cognitive neuroscience and education (Bruer, 1997; Sigman, Peña, Goldin, & 

Ribeiro, 2014), with the ultimate goal of understanding the mechanisms of learning disabilities 

and improving pedagogical practices.   
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